Resistive Switching Behavior in Amorphous Aluminum Oxide Film Grown by Chemical Vapor Deposition
QUAN Xiao-Tong, ZHU Hui-Chao** , CAI Hai-Tao, ZHANG Jia-Qi, WANG Xiao-Jiao
School of Electronic Science and Technology, Dalian University of Technology, Dalian 116024
Abstract :The repeatable bipolar resistive switching phenomenon is observed in amorphous Al2 O3 prepared by metal-organic chemical vapor deposition on ITO glass, with ITO as the bottom electrode and Ag as the top electrode. The crystal structure, morphology, composition and optical properties of Al2 O3 thin films are investigated by x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy and ultraviolet-visible-infrared spectroscopy, respectively. The electronic character of Ag/Al2 O3 /ITO structure is tested by an Agilent B1500A. The device shows a typical bipolar resistive switching behavior under the dc voltage sweep mode at room temperature. The variation ratio between HRS and LRS is larger than nearly three orders of magnitude, which indicates the good potential of this structure in future resistive random access memory (ReRAM) applications. Based on the conductive filament model, the high electric field is considered the main reason for the resistive switching according to our measurements.
出版日期: 2014-06-30
:
81.05.Gc
(Amorphous semiconductors)
81.15.Gh
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
85.30.De
(Semiconductor-device characterization, design, and modeling)
[1] Waser R and Aono M 2007 Nat. Mater. 6 833 [2] Xu D L, Tang M H, Zeng B W, Xiao Y G and Wang Z P 2013 Chin. Phys. B 22 117314 [3] Strukov D B, Snider G S, Stewart D G and Williams R S 2008 Nature 453 80 [4] Hur J H, Lee M J, Lee C B, Kim Y B and Kim C J 2010 Phys. Rev. B 82 155321 [5] Kim K M, Choi B J and Hwang C S 2007 Appl. Phys. Lett. 90 242906 [6] Wei X Y, Zhang K L, Wang F, Zhao J S and Miao Y P 2013 Chin. Phys. B 22 37201 [7] Chen X, Ma X, Yang Y, Chen L, Xiong G, Lian G, Yang Y and Yang J 2011 Appl. Phys. Lett. 98 122102 [8] Kim S, Jeong H Y, Choi S Y and Choi Y K 2010 Appl. Phys. Lett. 97 033508 [9] Kim D C et al 2006 Appl. Phys. Lett. 88 202102 [10] Chen Y S et al 2010 Appl. Phys. Lett. 97 262112 [11] Lee S, Kim H, Yun D J, Rhee S W and Yong K 2009 Appl. Phys. Lett. 95 262113 [12] Yan X, Li K, Yin J, Xia Y, Guo H, Chen L and Liu Z 2010 Electrochem. Solid-State Lett. 13 H87 [13] Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312 [14] Menke T, Meuffels P, Dittmann R, Szot K and Waser R 2009 J. Appl. Phys. 105 066104 [15] Watanabe Y, Bednorz J G, Bietsch A, Gerber C, Widmer D, Beck A and Wind S J 2001 Appl. Phys. Lett. 78 3738 [16] Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819 [17] Chen Y, Chen L, Lian G and Xiong G 2009 J. Appl. Phys. 106 023708 [18] Xiong G C, Chen Y S, Chen L P and Lian G J 2008 Chin. Phys. Lett. 25 3378 [19] Kim S and Choi Y K 2009 IEEE Trans. Electron Devices 56 3049 [20] Yu L E, Kim S, Ryu M K, Choi S Y and Choi Y K 2008 IEEE Electron Device Lett. 29 331 [21] Fujii T, Kawasaki M, Sawa S, Akoh H, Kawazoe Y and Y Tokura 2005 Appl. Phys. Lett. 86 012107 [22] Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073 [23] Mitkova M, Wang Y and Boolchand P 1999 Phys. Rev. Lett. 83 3848 [24] Odagawa A, Sato H, Inoue I, Akoh H, Kawasaki M, Tokura Y, Kanno T and Adachi H 2004 Phys. Rev. B 70 224403 [25] Seo S et al 2004 Appl. Phys. Lett. 85 5655 [26] Hench L L 1991 J. Am. Ceram. Soc. 74 1487 [27] Zhao Q, Xu X, Zhang H, Chen Y, Xu J and Yu D 2004 Appl. Phys. A 79 1721 [28] Thielsch R, Gatto A, Heber J and Kaiser N 2002 Thin Solid Films 410 86 [29] Ferri D, Bürgi T and Baiker A 2001 J. Phys. Chem. B 105 3187 [30] Juppo M, Rahtu A, Ritala M and Leskel? M 2000 Langmuir 16 4034 [31] Groner M, Fabreguette F, Elam J and George S 2004 Chem. Mater. 16 639 [32] Sun B, Liu Y X, Liu L F, Xu N, Wang Y, Liu X Y, Han R Q and Kang J F 2009 J. Appl. Phys. 105 061630
[1]
. [J]. 中国物理快报, 2022, 39(11): 118501-.
[2]
. [J]. 中国物理快报, 2020, 37(9): 98501-.
[3]
. [J]. 中国物理快报, 2019, 36(2): 28101-.
[4]
. [J]. 中国物理快报, 2017, 34(3): 38101-038101.
[5]
. [J]. 中国物理快报, 2016, 33(09): 98502-098502.
[6]
. [J]. 中国物理快报, 2012, 29(10): 106801-106801.
[7]
GONG Yue-Feng;SONG Zhi-Tang;LING Yun;LIU Yan;LI Yi-Jin;FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials [J]. 中国物理快报, 2010, 27(8): 88501-088501.
[8]
GONG Yue-Feng;SONG Zhi-Tang;LING Yun;LIU Yan;FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling [J]. 中国物理快报, 2009, 26(11): 118101-118101.
[9]
DING Xu-Li;LI Qing-Shan;KONG Xiang-He. Optical and Electrical Properties Evolution of Diamond-Like Carbon Thin Films with Deposition Temperature [J]. 中国物理快报, 2009, 26(2): 27802-027802.
[10]
GONG Yue-Feng;LING Yun;SONG Zhi-Tang;FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling [J]. 中国物理快报, 2008, 25(9): 3455-3458.
[11]
Raid A. Ismail;Kadhim A. Hubeatir;Abdullah K. Abass. Amorphous/Crystalline (n-n) Si Heterojunction Photodetector Made by Q-Switched 0.532-mm Laser Pulses with Novel Technique [J]. 中国物理快报, 2006, 23(2): 370-373.
[12]
DONG Liang;YUE Rui-Feng;LIU Li-Tian;ZHANG Wan-Jie. Freestanding a-Si Thin Film Transistor for Room-Temperature Infrared Detection [J]. 中国物理快报, 2004, 21(2): 262-265.
[13]
MAO Dong-sheng;ZHAO Jun;LI Wei;WANG Xi;LIU Xiang-huai;ZHU Yu-kun;ZHOU Jiang-yun;FAN Zhong;LI Qiong;XU Jing-fang. Electron Field Emission from Different sp3 Content Diamond-Like Carbon Films [J]. 中国物理快报, 1999, 16(2): 152-154.