High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics
Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan* , and Qing Wan*
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract :High-performance amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) gated by Al$_{2}$O$_{3}$/ HfO$_{2}$ stacked dielectric films are investigated. The optimized TFTs with Al$_{2}$O$_{3}$ (2.0 nm)/HfO$_{2}$ (13 nm) stacked gate dielectrics demonstrate the best performance, including low total trap density $N_{\rm t}$, low subthreshold swing voltage, large switching ratio $I_{\rm ON/OFF}$, high mobility $\mu_{_{\scriptstyle \rm FE}}$, and low operating voltage, equal to $1.35 \times 10^{12}$ cm$^{-2}$, 88 mV/dec, $5.24 \times 10^{8}$, 14.2 cm$^{2}$/V$\cdot$s, and 2.0 V, respectively. Furthermore, a low-voltage-operated resistor-loaded inverter has been fabricated based on such an a-IGZO TFT, showing ideal full swing characteristics and high gain of $\sim $27 at 3.0 V. These results indicate a-IGZO TFTs gated by optimized Al$_{2}$O$_{3}$/HfO$_{2}$ stacked dielectrics are of great interests for low-power, high performance, and large-area display and emerging electronics.
收稿日期: 2022-09-04
出版日期: 2022-10-19
:
85.30.De
(Semiconductor-device characterization, design, and modeling)
77.55.D
(High-permittivity gate dielectric films)
81.05.Gc
(Amorphous semiconductors)
73.20.At
(Surface states, band structure, electron density of states)
[1] Kamiya T, Nomura K, Hosono H et al. 2009 J. Disp. Technol. 5 273
[2] Fan C L, Shang M C, Li B J et al. 2014 Materials 7 5761
[3] Li Y R, Yin K, Diao Y et al. 2022 Nanoscale 14 2316
[4] Hsu C M, Tzou W C, Yang C F et al. 2015 Materials 8 2769
[5] Fan C L, Shang M C, Li B J, Lin Y Z, Wang S J, Lee W D, Hung B R et al. 2015 Materials 8 1704
[6] Hu W N, Jiang J, Xie D D et al. 2018 Nanoscale 10 14893
[7] Su H, Ma Y X, Lai P T et al. 2019 IEEE Electron Device Lett. 40 1953
[8] Kim T, Nam Y, Hur J et al. 2016 IEEE Electron Device Lett. 37 1131
[9] Zhu L, He G, Long Y et al. 2018 IEEE Trans. Electron Devices 65 2870
[10] Kim J B, Fuentes-Hernandez C et al. 2009 Appl. Phys. Lett. 94 142107
[11] Chang S, Song Y W, Lee S et al. 2008 Appl. Phys. Lett. 92 192104
[12] Alshammari F, Nayak P et al. 2016 ACS Appl. Mater. & Interfaces 8 22751
[13] Mikhelashvili V and Eisenstein G 2007 Thin Solid Films 515 3704
[14] Wang X N, Zhang X Q, Du J et al. 2011 Mater. Sci. Forum 687 209
[15] Cho M H, Roh Y S, Whang C N et al. 2002 Appl. Phys. Lett. 81 1071
[16] Hsieh H H and Wu C C 2006 Appl. Phys. Lett. 89 041109
[17] Chen R S, Zhou W, Zhang M et al. 2012 Thin Solid Films 520 6681
[18] Chen Y Y, Liu Y, Wu Z H, Wang L, Li B, En Y F, and Chen Y Q 2018 Chin. Phys. Lett. 35 048502
[19] Lee S Y, Chang S, Lee J S et al. 2010 Thin Solid Films 518 3030
[20] Verlaak S, Arkhipov V, Heremans P et al. 2003 Appl. Phys. Lett. 82 745
[21] Lee K Y, Lee W C, Lee Y J et al. 2006 Appl. Phys. Lett. 89 222906
[22] Kukli K, Ritala M, Lu J, Hårsta A, and Leskelä M 2004 J. Electrochem. Soc. 151 F189
[23] Shan F, Liu A, Liu G et al. 2015 J. Disp. Technol. 11 541
[24] Lee J M, Cho I T, Lee J H et al. 2009 Appl. Phys. Lett. 94 222112
[25] Huang X M, Wu C F, Lu H et al. 2015 Chin. Phys. Lett. 32 077303
[26] Rawat A, Gupta A K, Rawat B et al. 2021 IEEE Trans. Electron Devices 68 3622
[27] Li Y S, He J C, Hsu S M et al. 2016 IEEE Electron Device Lett. 37 46
[1]
. [J]. 中国物理快报, 2020, 37(11): 118501-.
[2]
. [J]. 中国物理快报, 2020, 37(10): 108401-.
[3]
. [J]. 中国物理快报, 2020, 37(9): 98501-.
[4]
. [J]. 中国物理快报, 2020, 37(7): 76801-.
[5]
. [J]. 中国物理快报, 2020, 37(6): 68502-.
[6]
. [J]. 中国物理快报, 2020, 37(6): 68503-.
[7]
. [J]. 中国物理快报, 0, (): 68502-.
[8]
. [J]. 中国物理快报, 0, (): 68503-.
[9]
. [J]. 中国物理快报, 2020, 37(3): 38501-.
[10]
. [J]. 中国物理快报, 2019, 36(6): 67202-.
[11]
. [J]. 中国物理快报, 2018, 35(11): 117201-.
[12]
. [J]. 中国物理快报, 2018, 35(5): 56101-.
[13]
. [J]. 中国物理快报, 2018, 35(3): 38501-.
[14]
. [J]. 中国物理快报, 2018, 35(2): 28501-.
[15]
. [J]. 中国物理快报, 2017, 34(12): 128501-.