Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy
LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi**
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :The intermediate phase of hydrothermal synthesis of the Na0.44 MnO2 (NMO) nanowires is systematically investigated by means of transmission electron microscopy (TEM). The coexistence of Na-birnessite and NMO is commonly observed in the nanosheets. The NMO nanobelts in general have the width of ~ 15 nm embedded in the (001) oriented Na-birnessite nanosheet. It is also found that the nanosheets of this intermediate phase often split along the NMO and Na-birnessite interface. Our structural study also shows that the NMO nanobelts prefer to grow along the [001] direction and gives rise to the [001] elongated NMO nanowires. Based on our TEM observations, the visible lattice mismatch and the resultant strain at the NMO/Na-birnessite interface play a critical role for formation of notable splitting structures in this kind of nanomaterial. The mechanism for the formation of the [001] NMO nanobelt is briefly discussed.
收稿日期: 2013-06-27
出版日期: 2013-11-21
:
81.07.Gf
(Nanowires)
61.46.Km
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
68.37.Lp
(Transmission electron microscopy (TEM))
88.80.ff
(Batteries)
82.47.Aa
(Lithium-ion batteries)
[1] Peng K Q and Lee S T 2011 Adv. Mater. 23 198 [2] Choy J H, Kim D H, Kwon C W, Hwang S J and Kim Y K 1999 J. Power Sources 77 1 [3] Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H and Kajita K 2002 Solid State Ionics 152-153 833 [4] Taberna L, Mitra S, Poizot P, Simon P and Tarascon J M 2006 Nat. Mater. 5 567 [5] Moriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H and Nakashima N 2006 Adv. Mater. 18 69 [6] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885 [7] Hosono E, Kudo T, Honma I, Matsuda H and Zhou H S 2009 Nano Lett. 9 1045 [8] Lee H W, Muralidharan P, Ruffo R, Mari C M, Cui Y and D K Kim 2010 Nano Lett. 10 3852 [9] Chan C K, Peng H L, Liu G, Mcllwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotechnol. 3 31 [10] Jiao F, Bao J, Hill A H and Bruce P G 2008 Angew. Chem. Int. Ed. 47 9711 [11] Hosono E, Matsuda H, Saito T, Kudo T, Ichihara M, Honma I and Zhou H S 2010 J. Power Sources 195 7098 [12] Zhou Y K, Shen C M, Huang J and Li H L 2002 Mater. Sci. Eng. B 95 77 [13] Li Y G and Wu Y Y 2009 Nano Res. 2 54 [14] Berréhar J, Caroli C, C Lapersonne-Meyer and Schott M 1992 Phys. Rev. B 46 13487 [15] Kitsunezaki S 1999 Phys. Rev. B 60 6449 [16] Matthews W and Klokholm E 1972 Mater. Res. Bull. 7 213 [17] Cao J B and Wu J Q 2011 Mater. Sci. Eng. R 71 35 [18] Cai Y, Chan S K, Sou I K, Chan Y F, Su D S and Wang N 2007 Small 3 111 [19] Ding Y, Fan F R, Tian Z Q and Wang Z L 2009 Small 5 2812 [20] Silly F and Castell M R 2005 Phys. Rev. Lett. 94 046103
[1]
. [J]. 中国物理快报, 2022, 39(5): 58101-058101.
[2]
. [J]. 中国物理快报, 2017, 34(2): 26201-026201.
[3]
. [J]. 中国物理快报, 2016, 33(07): 78102-078102.
[4]
. [J]. 中国物理快报, 2016, 33(06): 68101-068101.
[5]
. [J]. 中国物理快报, 2015, 32(07): 77804-077804.
[6]
. [J]. 中国物理快报, 2015, 32(5): 58102-058102.
[7]
. [J]. 中国物理快报, 2014, 31(07): 78103-078103.
[8]
. [J]. 中国物理快报, 2013, 30(10): 108102-108102.
[9]
. [J]. Chin. Phys. Lett., 2012, 29(11): 118103-118103.
[10]
YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells [J]. 中国物理快报, 2012, 29(7): 78501-078501.
[11]
FENG Qiu-Ju**;JIANG Jun-Yan;TAO Peng-Cheng;LIU Shuang;XU Rui-Zhuo;LI Meng-Ke;SUN Jing-Chang
. The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods [J]. 中国物理快报, 2011, 28(10): 108103-108103.
[12]
WEI Ang;WANG Zhao;PAN Liu-Hua;LI Wei-Wei;XIONG Li;DONG Xiao-Chen**;HUANG Wei**
. Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorodswei-huang@njupt.edu.cn [J]. 中国物理快报, 2011, 28(8): 80702-080702.
[13]
LIU Zhan-Hui;XIU Xiang-Qian**;YAN Huai-Yue;ZHANG Rong;XIE Zi-Li;HAN Ping;SHI Yi;ZHENG You-Dou
. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy [J]. 中国物理快报, 2011, 28(5): 57804-057804.
[14]
BIAN Fei;WANG Rui;YANG Huai-Xin;ZHANG Xin-Zheng;LI Jian-Qi;XU Hong-Xing;XU Jing-Jun;ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization [J]. 中国物理快报, 2010, 27(8): 88101-088101.
[15]
YE Xian;HUANG Hui;REN Xiao-Min;YANG Yi-Su;GUO Jing-Wei;HUANG Yong-Qing;WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles [J]. 中国物理快报, 2010, 27(4): 46101-046101.