摘要Arsenic-doped petal-like zinc oxide microrods are grown on silicon (100) substrates by the chemical vapor deposition method without the use of catalysts. Scanning electron microscopy shows that As-doped petal-like ZnO microrods with a preferred c−axial orientation are obtained, which is well in accordance with x-ray diffraction analysis. The obtained ZnO microrods have uniform lengths of about 2 µm and side lengths of about 100 nm. As-related acceptor emissions are observed from photoluminescence spectra of the ZnO microrods at a temperature of 11 K. The acceptor binding energy is estimated to be 128 meV.
Abstract:Arsenic-doped petal-like zinc oxide microrods are grown on silicon (100) substrates by the chemical vapor deposition method without the use of catalysts. Scanning electron microscopy shows that As-doped petal-like ZnO microrods with a preferred c−axial orientation are obtained, which is well in accordance with x-ray diffraction analysis. The obtained ZnO microrods have uniform lengths of about 2 µm and side lengths of about 100 nm. As-related acceptor emissions are observed from photoluminescence spectra of the ZnO microrods at a temperature of 11 K. The acceptor binding energy is estimated to be 128 meV.
FENG Qiu-Ju**;JIANG Jun-Yan;TAO Peng-Cheng;LIU Shuang;XU Rui-Zhuo;LI Meng-Ke;SUN Jing-Chang
. The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. 中国物理快报, 2011, 28(10): 108103-108103.
FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang
. The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods. Chin. Phys. Lett., 2011, 28(10): 108103-108103.
[1] Sun J C, Liang H W, Zhao J Z, Bian J M, Feng Q J, Wang J W, Zhao Z W and Du G T 2008 Chin. Phys. Lett. 25 4345
[2] Liang H W, Feng Q J, Sun J C, Zhao J Z, Bian J M, Hu L Z, Zhang H Q, Luo Y M and Du G T 2008 Semicond. Sci. Technol. 23 025014
[3] Shan C X, Liu Z, and Hark S K 2008 Appl. Phys. Lett. 92 073103
[4] Geng C, Jiang Y, Yao Y, Meng X, Zapien J A, Lee C S, Lifshitz Y and Lee S T 2004 Adv. Funct. Mater. 14 589
[5] Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R and Choi H J 2002 Adv. Funct. Mater. 12 323
[6] Lin C C, Chen H P and Chen S Y 2005 Chem. Phys. Lett. 404 30
[7] Fang X, Li J H, Zhao D X, Shen D Z, Li B H and Wang X H 2009 J. Phys. Chem. C 113 21208
[8] Sun M H, Zhang Q F and Wu J L 2007 J. Phys. D: Appl. Phys. 40 3798
[9] Kang H S, Kim G H, Kim D L, Chang H W, Ahn B D and Lee S Y 2006 Appl. Phys. Lett. 89 181103
[10] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J and Park Y S 2006 Appl. Phys. Lett. 88 241108
[11] Feng Q J, Hu L Z, Liang H W, Feng Y, Wang J, Sun J C, Zhao J Z, Li M K and Dong L 2010 Appl. Surf. Sci. 257 1084
[12] Liang H W, Lu Y M, Shen D Z, Liu Y C, Li B H, Zhang J Y and Fan X W 2002 Proc. SPIE 4913 187
[13] Zhang B P, Binh N T, Segawa Y, Wakatsuki K and Usami N 2003 Appl. Phys. Lett. 83 1635
[14] Reynolds D C, Look D C, Jogai B and Collins T C 2001 Appl. Phys. Lett. 79 3794
[15] Sun J C, Liang H W, Zhao J Z, Feng Q J, Bian J M, Zhao Z W, Zhang H Q, Luo Y M, Hu L Z and Du G T 2008 Appl. Surf. Sci. 254 7482
[16] Lee W, Jeong M C and Myoung J M 2004 Appl. Phys. Lett. 85 6167
[17] Hwang D K, Kim H S, Lim J H, Oh J Y, Yang J H, Park S J, Kim K K, Look D C and Park Y S 2005 Appl. Phys. Lett. 86 151917
[18] Ryu Y R, Lee T S and White H W 2003 Appl. Phys. Lett. 83 87
[19] Look D C 2001 Mater. Sci. Eng. B 80 383
[20] Meyer B K, Alves H, Hofmann D M, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Straßburg M, Dworzak M, Haboeck U and Rodina A V 2004 Phys. Status Solidi B 241 231
[21] Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92 155504