The Performance Characteristics of a Nano-thermoelectric Refrigerator Driven by an External Stochastic Force
WANG Hao** , WU Guo-Xing
Tianhua College, Shanghai Normal University, Shanghai 201815
Abstract :We describe a single level quantum dot driven by an external stochastic force which works as a nano-thermoelectric refrigerator. Based on the model, expressions for the cooling rate, power input, and coefficient of performance (COP) are derived. The effects of the energy level and energy space on the refrigerator are revealed. The optimal performance characteristics are analyzed by numerical calculation. Furthermore, the practical operating regions of the refrigerator are determined.
收稿日期: 2012-11-18
出版日期: 2013-05-31
:
73.22.-f
(Electronic structure of nanoscale materials and related systems)
73.23.Hk
(Coulomb blockade; single-electron tunneling)
73.63.Kv
(Quantum dots)
74.81.Bd
(Granular, melt-textured, amorphous, and composite superconductors)
[1] Beenakker C W J and Staring A A M 1992 Phys. Rev. B 46 9667 [2] Humphrey T E, Newbury R, Taylor R P and Linke H 2002 Phys. Rev. Lett. 89 116801 [3] Swirkowicz R, Wierzbicki M and Barnas J 2009 Phys. Rev. B 80 195409 [4] Sanchez R and Büttiker M 2011 Phys. Rev. B 83 085428 [5] Sothmann B, Sanchez R, Jordan A N and Büttiker M 2012 Phys. Rev. B 85 205301 [6] Muralidharan B and Grifoni M 2012 Phys. Rev. B 85 155423 [7] Godijn S F, M?ller S, Buhmann H, Molenkamp L W and vanLangen S A 1999 Phys. Rev. Lett. 82 2927 [8] Llaguno M C, Fischer J E, Johnson A T and Hone J 2004 Nano Lett. 4 45 [9] Molenkamp L, Staring A A M, Alphenaar B W, van Houten H and Beenakker C W J 1994 Semicond. Sci. Technol. 9 903 [10] van Houten H and Beenakker C W J 1989 Phys. Rev. Lett. 63 1893 [11] Dzurak A S, Smith C G, Barnes C H W, Pepper M, Martín-Moreno L, Liang C T, Ritchie D A and Jones G A C 1997 Phys. Rev. B 55 R10197 [12] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701 [13] van Houten H, Beenakker C W J and Staring A M, in SingleCharge Tunneling, Grabert H and Devoret M H, eds, NATOASI Ser. B 294 (Plenum Press, N Y 1991) [14] Staring A A M, Molenkamp L W, Alphenaar B W, van HoutenH, Buyk O J A, Mabesoone M A A, Beenakker C W J and Foxon C T 1993 Europhys. Lett. 22 57 [15] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M1997 Science 278 252 [16] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57 [17] Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I 2005 Nature 436 677 [18] Avinun-Kalish M, Heiblum M, Zarchin O, Mahalu D and Umansky V 2005 Nature 436 529 [19] Ohtani H, Wilson R J, Chiang S and Mate C M 1988 Phys. Rev. Lett. 60 2398 [20] Stipe B C, Rezaei M A and Ho W 1998 Science 280 1732 [21] Wu S W, Nazin G V, Chen X, Qiu X H and Ho W 2004 Phys. Rev. Lett. 93 236802 [22] Ho W 2002 J. Chem. Phys. 117 11033 [23] Wang H, Wu G, Fu Y and Chen D 2012 J. Appl. Phys. 111 094318 [24] Wang H and Wu G 2012 Phys. Lett. A 376 2209 [25] Wang H, Wu G and Xie J 2012 Phys. Scr. 86 035705 [26] Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. Lett. 105 150603 [27] Esposito M, Lindenberg K and Van den Broeck C 2009 Phys. Rev. Lett. 102 130602 [28] Zhang Y and He J 2013 Chin. Phys. Lett. 30 010501 [29] Wang H and Wu G 2013 Continuum Mech. Thermodyn. 25 43 [30] Esposito M, Kumar N, Lindenberg K, Van den Broeck C 2012 Phys. Rev. E 85 031117
[1]
. [J]. 中国物理快报, 2023, 40(2): 29901-.
[2]
. [J]. 中国物理快报, 2022, 39(12): 127302-.
[3]
. [J]. 中国物理快报, 2021, 38(12): 127301-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 27301-.
[5]
. [J]. 中国物理快报, 2020, 37(11): 117301-.
[6]
. [J]. 中国物理快报, 2020, 37(11): 118501-.
[7]
. [J]. 中国物理快报, 2020, 37(9): 97301-.
[8]
. [J]. 中国物理快报, 2020, 37(8): 88201-.
[9]
. [J]. 中国物理快报, 2020, 37(7): 77302-.
[10]
. [J]. 中国物理快报, 2020, 37(1): 17402-017402.
[11]
. [J]. 中国物理快报, 2019, 36(11): 117301-.
[12]
. [J]. 中国物理快报, 2019, 36(9): 97301-.
[13]
. [J]. 中国物理快报, 2018, 35(12): 127301-.
[14]
. [J]. 中国物理快报, 2018, 35(12): 127302-.
[15]
. [J]. 中国物理快报, 2018, 35(1): 17101-.