Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe
Shenshen Yan1 , Yi Wang1 , Zhibin Gao1,2 , Yang Long1 , and Jie Ren1,3*
1 Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China2 Department of Physics, National University of Singapore, Singapore 117551, Republic of Singapore3 Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
Abstract :The directional design of functional materials with multi-objective constraints is a big challenge, in which performance and stability are determined by a complicated interconnection of different physical factors. We apply multi-objective optimization, based on the Pareto Efficiency and Particle-Swarm Optimization methods, to design new functional materials directionally. As a demonstration, we achieve the thermoelectric design of 2D SnSe materials via the above methods. We identify several novel metastable 2D SnSe structures with simultaneously lower free energy and better thermoelectric performance in their experimentally reported monolayer structures. We hope that the results of our work on the multi-objective Pareto Optimization method will represent a step forward in the integrative design of future multi-objective and multi-functional materials.
收稿日期: 2020-11-09
出版日期: 2021-01-27
:
61.46.-w
(Structure of nanoscale materials)
73.22.-f
(Electronic structure of nanoscale materials and related systems)
73.50.Lw
(Thermoelectric effects)
63.22.-m
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
[1] Bell L E 2008 Science 321 1457
[2] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[3] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[4] Wang F Q, Zhang S, Yu J and Wang Q 2015 Nanoscale 7 15962
[5] Bansal D, Hong J, Li C W, May A F, Porter W, Hu M Y, Abernathy D L and Delaire O 2016 Phys. Rev. B 94 054307
[6] Mehboudi M, Fregoso B M, Yang Y, Zhu W, van der Zande A, Ferrer J, Bellaiche L, Kumar P and Barraza-Lopez S 2016 Phys. Rev. Lett. 117 246802
[7] Skelton J M, Burton L A, Parker S C, Walsh A, Kim C E, Soon A, Buckeridge J, Sokol A A, Catlow C R A, Togo A et al. 2016 Phys. Rev. Lett. 117 075502
[8] Zhang K, Deng K, Li J, Zhang H, Yao W, Denlinger J, Wu Y, Duan W and Zhou S 2018 Phys. Rev. Mater. 2 054603
[9] Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W and Wang Q 2013 J. Am. Chem. Soc. 135 1213
[10] Zhang C, Yin H, Han M, Dai Z, Pang H, Zheng Y, Lan Y Q, Bao J and Zhu J 2014 ACS Nano 8 3761
[11] Zhao S, Wang H, Zhou Y, Liao L, Jiang Y, Yang X, Chen G, Lin M, Wang Y, Peng H et al. 2015 Nano Res. 8 288
[12] Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J and Zhao L D 2018 Science 360 778
[13] Wang Z, Fan C, Shen Z, Hua C, Hu Q, Sheng F, Lu Y, Fang H, Qiu Z, Lu J et al. 2018 Nat. Commun. 9 47
[14] Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141
[15] Burton M R, Mehraban S, Beynon D, McGettrick J, Watson T, Lavery N P and Carnie M J 2019 Adv. Energy Mater. 9 1900201
[16] Chen Z G, Shi X, Zhao L D and Zou J 2018 Prog. Mater. Sci. 97 283
[17] Wei P C, Bhattacharya S, He J, Neeleshwar S, Podila R, Chen Y and Rao A 2016 Nature 539 E1
[18] Nishimura T, Sakai H, Mori H, Akiba K, Usui H, Ochi M, Kuroki K, Miyake A, Tokunaga M, Uwatoko Y, Katayama K, Murakawa H and Hanasaki N 2019 Phys. Rev. Lett. 122 226601
[19] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T et al. 2014 Nat. Commun. 5 3689
[20] Gao Z, Dong X, Li N and Ren J 2017 Nano Lett. 17 772
[21] Shimizu S, Bahramy M S, Iizuka T, Ono S, Miwa K, Tokura Y and Iwasa Y 2016 Proc. Natl. Acad. Sci. USA 113 6438
[22] Schmidt J, Marques M R G, Botti S and Marques M A L 2019 npj Comput. Mater. 5 83
[23] Gubernatis J E and Lookman T 2018 Phys. Rev. Mater. 2 120301
[24] Long Y, Ren J and Chen H 2020 Phys. Rev. Lett. 124 185501
[25] Long Y, Ren J, Li Y and Chen H 2019 Appl. Phys. Lett. 114 181105
[26] Hao S, Dravid V P, Kanatzidis M G and Wolverton C 2019 npj Comput. Mater. 5 58
[27] Iwasaki Y, Takeuchi I, Stanev V, Kusne A G, Ishida M, Kirihara A, Ihara K, Sawada R, Terashima K, Someya H, Uchida K I, Saitoh E and Yorozu S 2019 Sci. Rep. 9 2751
[28] Hu Z Y, Li K Y, Lu Y, Huang Y and Shao X H 2017 Nanoscale 9 16093
[29] Ul H B, AlFaify S, Ahmed R, Butt F K, Laref A and Shkir M 2018 Phys. Rev. B 97 075438
[30] Ul H B, AlFaify S and Laref A 2019 Phys. Chem. Chem. Phys. 21 4624
[31] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[32] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[33] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
[34] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H and Yang H 2015 Science 349 625
[35] Mostaghim S and Teich J 2003 Proceedings of the 2003 IEEE Swarm Intelligence Symposium SIS'03 (Cat. No.03EX706), Indianapolis, IN, USA, 2003, pp 26–33
[36] Chen H Z, Zhang Y Y, Gong X and Xiang H 2014 J. Phys. Chem. C 118 2333
[37] Yang J, Zhou J, Liu L and Li Y 2009 Comput. & Math. Appl. 57 1995
[38] Lalwani S, Singhal S, Kumar R and Gupta N 2013 Trans. Comb. 2 39
[39] Coello C A C, Pulido G T and Lechuga M S 2004 IEEE Trans. Evol. Comput. 8 256
[40] Wang Y and Ren J 2020 Phys. Chem. Chem. Phys. 22 4481
[41] Deb K, Pratap A, Agarwal S and Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[45] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[46] Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
[47] Núñez-Valdez M, Allahyari Z, Fan T and Oganov A R 2018 Comput. Phys. Commun. 222 152
[48] Zhang Y Y, Gao W, Chen S, Xiang H and Gong X G 2015 Comput. Mater. Sci. 98 51
[49] Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B and Su G 2016 Sci. Rep. 6 19830
[50] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[51] von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P and Cava R J 2017 J. Am. Chem. Soc. 139 2771
[52] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
[53] Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N 2016 Mater. Res. Lett. 4 204
[54] Liu D, Every A G and Tománek D 2016 Phys. Rev. B 94 165432
[55] Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[56] Shafique A and Shin Y H 2017 Sci. Rep. 7 506
[57] Dewandre A, Hellman O, Bhattacharya S, Romero A H, Madsen G K and Verstraete M J 2016 Phys. Rev. Lett. 117 276601
[58] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[59] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601
[60] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[61] Wang H, Pei Y, LaLonde A D and Snyder G J 2012 Proc. Natl. Acad. Sci. USA 109 9705
[62] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M et al. 2007 Nat. Mater. 6 129
[63] Kuroki K and Arita R 2007 J. Phys. Soc. Jpn. 76 083707
[64] Mahan G and Sofo J 1996 Proc. Natl. Acad. Sci. USA 93 7436
[65] Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
[66] Ding G, Li J and Gao G 2015 RSC Adv. 5 91974
[67] Yan J, Gorai P, Ortiz B, Miller S, Barnett S A, Mason T, Stevanović V and Toberer E S 2015 Energy & Environ. Sci. 8 983
[68] Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 046804
[69] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Felipe H, Shi Z, Chen L, Zhang Z, Yang F et al. 2017 Nat. Nanotechnol. 12 21
[70] Han W H, Kim S, Lee I H and Chang K J 2017 J. Phys. Chem. Lett. 8 4627
[1]
. [J]. 中国物理快报, 2016, 33(05): 56101-056101.
[2]
. [J]. 中国物理快报, 2015, 32(07): 76201-076201.
[3]
. [J]. 中国物理快报, 2015, 32(06): 64206-064206.
[4]
. [J]. 中国物理快报, 2014, 31(12): 122801-122801.
[5]
. [J]. 中国物理快报, 2014, 31(1): 16501-016501.
[6]
. [J]. 中国物理快报, 2013, 30(11): 118103-118103.
[7]
. [J]. 中国物理快报, 2013, 30(6): 66102-066102.
[8]
. [J]. 中国物理快报, 2013, 30(5): 57804-057804.
[9]
. [J]. Chin. Phys. Lett., 2013, 30(1): 17103-017103.
[10]
ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53 Mn24 Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy [J]. 中国物理快报, 2012, 29(5): 50702-050702.
[11]
PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes [J]. 中国物理快报, 2011, 28(6): 66104-066104.
[12]
WANG Sheng-Jie;ZHANG Chun-Lai;WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation [J]. 中国物理快报, 2010, 27(10): 106101-106101.
[13]
ZHANG Xiao-Fei;ZHANG Chu-Hang;LV Neng;XIE Jian-Ping;YE Gao-Xiang;. Condensation Behavior of Ag Aggregates on Liquid Surfaces [J]. 中国物理快报, 2010, 27(9): 96102-096102.
[14]
LI Ji-Ling;YANG Guo-Wei;ZHAO Ming-Wen;LIU Xiang-Dong;XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption [J]. 中国物理快报, 2010, 27(9): 97101-097101.
[15]
TIAN Bao-Li;DU Zu-Liang;MA Yan-Mei;LI Xue-Fei;CUI Qi-Liang;CUI Tian;LIU Bing-Bing;ZOU Guang-Tian. Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa [J]. 中国物理快报, 2010, 27(2): 26103-026103.