摘要Temperature and diameter dependence of the thermal conductivity of several armchair single-walled carbon nanotubes (SWNTs) are studied by nonequilibrium molecular dynamics method with Brenner II potential. The thermal conductivities are calculated at temperatures from 100 K to 600 K. It is found that the thermal conductivity decreases as the temperature increases and increases as the diameter of SWNT increases. The results demonstrate that these two phenomena are due to the onset of the Umklapp process.
Abstract:Temperature and diameter dependence of the thermal conductivity of several armchair single-walled carbon nanotubes (SWNTs) are studied by nonequilibrium molecular dynamics method with Brenner II potential. The thermal conductivities are calculated at temperatures from 100 K to 600 K. It is found that the thermal conductivity decreases as the temperature increases and increases as the diameter of SWNT increases. The results demonstrate that these two phenomena are due to the onset of the Umklapp process.
PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. 中国物理快报, 2011, 28(6): 66104-066104.
PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes. Chin. Phys. Lett., 2011, 28(6): 66104-066104.
[1] Iijima S 1991 Nature 354 56
[2] Szleifer I and Yerushalmi-Rozen R 2005 Polymer 46 7803
Vijayaraghavan A, Hennrich F and Stürzl et al 2010 ACS Nano 4 2748
[3] Che J, Cagin T and Goddard W A III 2000 Nanotechnology 11 65
[4] Berber S, Kwon Y-K and Tomanek D 2000 Phys. Rev. Lett. 84 4613
[5] Hone J, Whitney M, Piskoti C and Zettl A 1999 Phys. Rev. B 59 R2514
[6] Pop E, Mann D, Wang Q, Goodson K and Dai H J 2006 Nano Lett. 6 96
[7] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[8] Wang Z L, Liang J G and Tang D W et al 2008 Acta Phys. Sini. 57 3391 (in Chinese)
[9] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Phys. Rev. Lett. 95 065502
[10] Grujicic M, Cao G and Gersten B 2004 Mater. Sci. Eng. B 107 204
[11] Yao Z H, Wang J S, Li B and Liu G R 2005 Phys. Rev. B 71 085417
[12] Osman M A and Srivastava D 2001 Nanotechnology 12 21
Alaghemandi M, Algaer E and Bohm M C et al 2009 Nanotechnology 20 115704
[13] Moreland J F, Freund J B and Chen G 2004 Microscale Thermophys. Eng. 8 61
[14] Pan R Q, Xu Z J and Zhu Z Y 2007 Chin. Phys. Lett. 24 1321
[15] Kondo N, Yamamoto T and Watanabe K 2006 e-J. Surf. Sci. Nanotech. 4 239
[16] Bi K D, Chen Y F, Yang J K, Wang Y H and Chen M H 2006 Phys. Lett. A 350 150
[17] Zhang G and Li B W 2005 J. Chem. Phys. 123 114714
[18] Zhang W, Zhu Z Y, Wang F, Wang T T, Sun L T and Wang Z X 2004 Nanotechnology 15 936
[19] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[20] Müller-Plathe F 1997. J. Chem. Phys. 106 6082
[21] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[22] Maiti A, Mahan G D and Pantelides S T 1997 Sol. Stat. Commun. 102 517
Oligschleger C and Schon J C 1999 Phys. Rev. B 59 4125
[23] Padgett C W and Brenner D W 2004 Nano Lett. 4 1051
[24] Hone J, Llaguno M C, Nemes N M, Johnson A T, Fischer J E, Walters D A, Casavant M J, Schmidt J and Smalley R E 2000 Appl. Phys. Lett. 77 666