Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors
CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian**
MOE Key Laboratory of Weak Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics Material and Technology, School of Physics, Nankai University, Tianjin 300071
Abstract:A novel symmetric plasmonic structure consisting of a metal-insulator-metal waveguide and a rectangular cavity is proposed to investigate Fano resonance performance by adjusting the size of the structure. The Fano resonance originates from the interference between a local quadrupolar and a broad spectral line in the rectangular cavity. The tuning of the Fano profile is realized by changing the size of the rectangular cavity. The nanostructure is expected to work as an excellent plasmonic sensor with a high sensitivity of about 530 nm/RIU and a figure of merit of about 650.
. [J]. 中国物理快报, 2013, 30(5): 57301-057301.
CHEN Zong-Qiang, QI Ji-Wei, CHEN Jing, LI Yu-Dong, HAO Zhi-Qiang, LU Wen-Qiang, XU Jing-Jun, SUN Qian . Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors. Chin. Phys. Lett., 2013, 30(5): 57301-057301.