High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)
JIANG Chun-Xia1,2, YANG Xiao-Yan1,2, ZHAO Kai1,2, WU Xiao-Ming1,2, YANG Li-Ying1,2, CHENG Xiao-Man1,2, WEI Jun3, YIN Shou-Gen1,2**
1Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384 2Institute of Material Physics, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384 3Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore
High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)
JIANG Chun-Xia1,2, YANG Xiao-Yan1,2, ZHAO Kai1,2, WU Xiao-Ming1,2, YANG Li-Ying1,2, CHENG Xiao-Man1,2, WEI Jun3, YIN Shou-Gen1,2**
1Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384 2Institute of Material Physics, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384 3Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore
摘要The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene), using ditert butyl peroxide as the crosslinker. The device performance depends on the crosslinker concentration significantly. We obtain an optimal on/off ratio of 105 and the saturate field−effect mobility of 0.34 cm2V−1s−1, by using a suitable ratios of ditert butyl peroxide, 0.5 wt% of poly(3-hexylthiophene). The microstructure images show that the crosslinked poly(3-hexylthiophene) active layers simultaneously possess appropriate crystallinity and smooth morphology. Moreover, crosslinking of poly(3-hexylthiophene) prevents the transistors from large threshold voltage shifts under ambient bias-stressing, showing an advantage in encouraging device environmental and operating stability.
Abstract:The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene), using ditert butyl peroxide as the crosslinker. The device performance depends on the crosslinker concentration significantly. We obtain an optimal on/off ratio of 105 and the saturate field−effect mobility of 0.34 cm2V−1s−1, by using a suitable ratios of ditert butyl peroxide, 0.5 wt% of poly(3-hexylthiophene). The microstructure images show that the crosslinked poly(3-hexylthiophene) active layers simultaneously possess appropriate crystallinity and smooth morphology. Moreover, crosslinking of poly(3-hexylthiophene) prevents the transistors from large threshold voltage shifts under ambient bias-stressing, showing an advantage in encouraging device environmental and operating stability.
[1] Tsumura A, Koezuka H and Ando T 1986 Appl. Phys. Lett. 49 1210
[2] Ziemelis K 1998 Nature 619 393
[3] Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E and Li W 2000 Nature 521 403
[4] Florian E, Hagen K, Marcus H, Ute Z, Günter S and Christine D 2004 Appl. Phys. Lett. 84 2673
[5] Ma L P and Yang Y 2004 Appl. Phys. Lett. 85 5084
[6] Veres J, Ogier S D, Leeming S W, Cupertino D C and Khaffaf S M 2003 Adv. Funct. Mater. 13 199
[7] Henning S 2005 Adv. Mater. 17 2411
[8] Ficker J, Ullmann A, Fix W, Rost H and Clemens W 2003 J. Appl. Phys. 94 2638
[9] Ficker J, Seggern H, Rost H, Fix W, Clemens W and McCulloch I 2004 Appl. Phys. Lett. 85 1377
[10] Pan F, Qian X R, Huang L Z, Wang H B and Yan D H 2011 Chin. Phys. Lett. 28 078504
[11] Gearba I R, ChangY N, Ron P and Black C T 2009 Appl. Phys. Lett. 90 173307
[12] Sirringhaus H, Tessler N, Thomas D S, Brown P J and Friend R H 1999 Solid-State Phys. 39 101
[13] Sharma A, Mathijssen S G J, Kemerink M, de Leeuw D M and Bobbert P A 2009 Appl. Phys. Lett. 95 253305
[14] Weast R C 1984–1985 Handbook of Chemistry and Physics 65th edn (Boca Raton: CRC Press)
[15] Chang J F, Sun B Q, Breiby D W, Nielsen M M, Solling T I, M Giles, McCulloch I and Sirringhaus H 2004 Chem. Mater. 16 4772
[16] Kline R J, McGehee M D, Kadnikova E N, Liu J S and Frechet J M J 2003 Adv. Mater. 15 1519
[17] Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rae J P, Scherf U and Neher D 2004 Adv. Funct. Mater. 14 757
[18] Sirrighaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P and de Leeuw D M 1999 Nature 401 685
[19] Bao Z, Dodabalapur A and Andrew J L 1996 Appl. Phys. Lett. 69 4108
[20] Ong B S, Wu Y L, Liu P and Gardner S 2004 J. Am. Chem. Soc. 126 3378
[21] Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S and McCulloch I 2005 J. Am. Chem. Soc. 127 1078