Reactive Mechanical Alloying Synthesis of Nanocrystalline Cubic Zirconium Nitride
QIU Li-Xia1,4, YAO Bin1, DING Zhan-Hui1,2, ZHAO Xu-Dong2, JI Hong1, DU Xiao-Bo1, JIA Xiao-Peng3, ZHENG Wei-Tao3
1College of Physics, Jilin University, Changchun 1300232Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 1300123Key Laboratory of Superhard Materials, Jilin University, Changchun 1300124College of Material Science and Engineering, Jilin University, Changchun 130012
Reactive Mechanical Alloying Synthesis of Nanocrystalline Cubic Zirconium Nitride
1College of Physics, Jilin University, Changchun 1300232Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 1300123Key Laboratory of Superhard Materials, Jilin University, Changchun 1300124College of Material Science and Engineering, Jilin University, Changchun 130012f
摘要Zirconium nitride powders with rock salt structure (γ-ZrNx) are prepared by mechanical milling of a mixture of Zirconium and hexagonal boron nitride (h-BN) powders. The products are analysed by x-ray diffraction (XRD), canning electron microscopy (SEM), and Raman spectroscopy (RS). The formation mechanism of γ-ZrNx by ball milling technique is investigated in detail. N atoms diffuse from amorphous BN (a-BN) into Zr to form Zr(N) solid solution alloy, then the Zr(N) solid solution alloy decomposes into γ-ZrNx. No ZrB2 is observed in the as-milled samples or the samples annealed at 1050°C for 2h.
Abstract:Zirconium nitride powders with rock salt structure (γ-ZrNx) are prepared by mechanical milling of a mixture of Zirconium and hexagonal boron nitride (h-BN) powders. The products are analysed by x-ray diffraction (XRD), canning electron microscopy (SEM), and Raman spectroscopy (RS). The formation mechanism of γ-ZrNx by ball milling technique is investigated in detail. N atoms diffuse from amorphous BN (a-BN) into Zr to form Zr(N) solid solution alloy, then the Zr(N) solid solution alloy decomposes into γ-ZrNx. No ZrB2 is observed in the as-milled samples or the samples annealed at 1050°C for 2h.
[1] Pilloud D, Dehlinger A S, Pierson J F, Roman A and Pichon L 2003 Surf. Coat. Technol. 174-175 338 [2] Wu D, Zhang Z, Fu W, Fan X andGuo H 1997 Appl. Phys. A 64 593 [3] Chhowalla M and Unalan H E 2005 Nat. Mater. 4 317 [4] Cassinese A, Iavarone M, Vaglio R, Grimsditch M and Uran S 2000 Phys. Rew. B 62 13915 [5] Constantin R and Miremad B 1999 Surf. Coat. Tech. 120-121 728 [6] Benjamin J S 1970 Metal. Trans. A 1 2943 [7] Koch C C, Cavin O B, McKamey C G and Scarbourgh J O 1983 Appl.Phys. Lett. 43 1017 [8]Yang D K, Wen C E, Han F S, Wang Q Z and Li H J 2006 Chin. Phys.Lett. 23 2161 [9] Sherif E E M, Sumiyama K, Aoki K and Suzuki K 1994 J. Mater.Res. 9 2891 [10] Sherif E E M, Sumiyama K and Suzuki K 1995 J. Mater.Res. 10 659 [11] Sherif E E M 1998 J. Alloys Compd. 279 263 [12] Zhang Y F, Tang Y H, Lee C S, Bello I and Lee S T 1999 Diam.Relat. Mater. 8 610 [13] Ding Z H, Yao B, Qiu L X, Bai S Z, Guo X Y, Xue Y F, Wang W R,Zhou X D and Su W H 2005 J. Alloys Compd. 391 77 [14] Yao B, Liu S E, Liu L, Si L, Su W H and Li Y 2001 J.Appl. Phys. 90 1650 [15] Cassinese A, Iavarone M and Vaglio R 2000 Phys. Rew. B 62 13915 [16] Yu J Q, Yi W Z, Chen B D and Chen H J 1987 Phase Diagram of BinaryAlloys (Shanghai: Science and Technology Press of Shanghai) pp 209 481 [17] Tsuchida T, Kawaguchi M and Kodaira K1997 Solid StateIonics 101-103 149 [18] Zhang G J, Ando M, Yang J F, Ohji T and Kanzaki S 2004 J. Eur.Ceram. Soc. 24 171 [19] Yao B, Liu L, Liu S E, Hu X and Su W H 2001 J. Mater.Res. 16 2583