摘要We perform a first-principles study on the electronic structure and elastic properties of Ti3AlC with an antiperovskite structure. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The elastic constants of Ti3AlC are derived yielding c11=356GPa, c12=55GPa, c44=157GPa. The bulk modulus B, shear modulus G and Young's modulus E are determined to be 156, 151 and 342GPa, respectively. These properties are compared with those of Ti3AlC2 and Ti2AlC with a layered structure in the Ti-Al-C system and Fe3AlC with the same antiperovskite structure.
Abstract:We perform a first-principles study on the electronic structure and elastic properties of Ti3AlC with an antiperovskite structure. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The elastic constants of Ti3AlC are derived yielding c11=356GPa, c12=55GPa, c44=157GPa. The bulk modulus B, shear modulus G and Young's modulus E are determined to be 156, 151 and 342GPa, respectively. These properties are compared with those of Ti3AlC2 and Ti2AlC with a layered structure in the Ti-Al-C system and Fe3AlC with the same antiperovskite structure.
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
引用本文:
DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations[J]. 中国物理快报, 2009, 26(11): 117102-117102.
DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations. Chin. Phys. Lett., 2009, 26(11): 117102-117102.
[1] Lopaci\'nski M, Puszynski J and Lis J 2001 J. Am.Ceram. Soc. 84 3051 [2] Barsoum M W 2000 Prog. Solid State Chem. 28201 [3] Matar S F, Petitcorps Y L and Etourneau J 1997 J.Mater. Chem. 7 99 [4] Hong X L, Mei B C, Zhu J Q, and Zhou W B 2004 J.Mater. Sci. 39 1589 [5] Wang X H and Zhou Y C 2002 Acta Mater. 50 3141 [6] Zou Y, Sun Z M, Tada S and Hashimoto H 2007 ScriptaMater. 56 725 [7] Zhou W B, Mei B C, Zhu J Q and Hong X L 2005 Mater.Lett. 59 131 [8] Tian W H and Nemoto M 1999 Intermetallics 71261 [9] Tian W H and Nemoto M 1997 Intermetallics 5237 [10] Guo J M, Chen K X, Wang B S, Zhang H, Li X Q and Zhou H P2006 Rare Metal Mater. Engin. 35 1708 [11] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J2007 WIEN2k, An Augmented Plane Wave Plus Local OrbitalsProgram for Calculating Crystal Properties (Austria: TechnologyUniveresitat Wien) [12] Jeitschko W, Nowotny H and Benesovky F 1964 MonotschChem. 95 319 [13] Xiong B K, Gong K, Zhou J J, Yu B H, Chen D and Shi D H2008 Chin. Phys. Lett. 25 2592 [14] Li Y L and Zeng Z 2008 Chin. Phys. Lett. 254086 [15] Xu G L, Zhang D L, Xia Y Z, Liu X F, Liu Y F and Zhang XZ 2009 Chin. Phys. Lett. 26 046302 [16] Sahara R, Shishido T, Nomura A, Kudou K, Okada S, KumarV, Nakajima K and Kawazoe Y 2006 Comput. Mater. Sci. 3612 [17] Yao Q, Sun J, Lin D, Liu S and Jiang B 2007 Intermetallics 15 694 [18] Conn\'{etable D and Maugis P 2008 Intermetallics 16 345 [19] Wang J Y and Zhou Y C 2004 Phys. Rev. B 69214111 [20] Ross, N L, Angel, R J, Kung, J and Chaplin T D 2002 Mater. Res. Soc. Sym. Proc. 718 115