Blue-to-Orange Tunable Luminescence from Europium Doped Yttrium--Silicon--Oxide--Nitride Phosphors
YANG Hu-Cheng1, LI Cheng-Yu2, PANG Ran2, G. Lakshminarayana1, ZHOU Shi-Feng1, TENG Yu1, QIU Jian-Rong1
1State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 3100272State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
Blue-to-Orange Tunable Luminescence from Europium Doped Yttrium--Silicon--Oxide--Nitride Phosphors
YANG Hu-Cheng1, LI Cheng-Yu2, PANG Ran2, G. Lakshminarayana1, ZHOU Shi-Feng1, TENG Yu1, QIU Jian-Rong1
1State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 3100272State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
Europium-doped yttrium--silicon--oxide--nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2O7 to nitride YSi3N5 state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465nm with 300nm excitation and a characteristic red emission of Eu3+ at 612nm with 230nm excitation. The YSi3N5:Eu phosphor shows a broad emission band centred at 595nm with some sharp peaks of Eu3+ with 325nm excitation. The absorption of the studied phosphors increases from 450 to 700nm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390nm excitation.
Europium-doped yttrium--silicon--oxide--nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2O7 to nitride YSi3N5 state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465nm with 300nm excitation and a characteristic red emission of Eu3+ at 612nm with 230nm excitation. The YSi3N5:Eu phosphor shows a broad emission band centred at 595nm with some sharp peaks of Eu3+ with 325nm excitation. The absorption of the studied phosphors increases from 450 to 700nm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390nm excitation.
[1] Nakamura S et al 1994 Appl. Phys. Lett. 641687 [2] Rohwer L S and Srivastava A M 2003 Development ofPhosphors for LEDS, Electrochem. Soc. Interface 36 [??????] [3] Taso J Y 2002 Light Emitting Diodes (LEDs) forGeneral Illumination Update (Washington, DC: OptoelectronicsIndustry Development Association) [4] Schlotter P et al 1999 Mater. Sci. Eng. B 59390 [5] Nakamura S and Fasol G 1997 The Blue Laser Diodes,GaN Based Light Emitters and Lasers (Berlin: Springer) p 216 [6] Mueller-Mach R, Mueller G O, Krames M R and Trottier T2002 IEEE J. Sel. Top. Quant. Electron. 8 339 [7] Kobayashi K and Taguchi T 2005 Proc. SPIE 573925 [8] Blasse G and Grabmaier B C 1994 LuminescentMaterials (Berlin: Springer) [9] Krevel van J W H, Rutten van J W T, Mandal H, Hintzen H Tand Metselaar R 2002 J. Solid State Chem. 165 19 [10] Krevel van J W H et al 1998 J. Alloys Compd. 268 272 [11] Yang H C et al 2008 Chem. Phys. Lett. 451 218 [12] Durand C et al 2004 J. Appl. Phys. 96 1719 [13] Feslche J 1973 Struct. Bonding 13 99 [14] Zhou P et al 2007 J. Lumin. 124 241 [15] Karar N et al 2005 J. Phys. D: Appl. Phys. 38 3580 [16] Ekstr\"{om T C et al 1997 J. Mater. Chem. 7505 [17] Liddell K et al 2001 J. Mater. Chem. 11 507 [18] Shannon R D, 1976 Acta Cryst. A 32 751 [19] Howe B and Diaz A L 2004 J. Lumin. 109 51 [20] Yang H C et al 2007 J. Lumin. 126 196 [21] Dorenbos P 2003 J. Lumin. 104 239 [22] Su Q 1991 J. Rare Earths (Special Issue) Proc.2nd Conference on Rare Earth Development and Application 765