摘要We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier--phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.
Abstract:We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier--phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.
DOU Xiu-Ming;SUN Bao-Quan;XIONG Yong-Hua;HUANG She-Song;NIHai-Qiao;NIU Zhi-Chuan. Temperature Dependence of Photoluminescence from Single and Ensemble InAs/GaAs Quantum Dots[J]. 中国物理快报, 2008, 25(9): 3440-3443.
DOU Xiu-Ming, SUN Bao-Quan, XIONG Yong-Hua, HUANG She-Song, NIHai-Qiao, NIU Zhi-Chuan. Temperature Dependence of Photoluminescence from Single and Ensemble InAs/GaAs Quantum Dots. Chin. Phys. Lett., 2008, 25(9): 3440-3443.
[1] Bimberg D and Ribbat C 2003 Microelectron. J. 34 323 [2] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M,Zhang L D, Hu E and Imamo\u{glu A 2000 Science 290 2282 [3] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502 [4] Brusaferri L et al 1996 Appl. Phys. Lett. 693354 [5] Xu Z Y et al 1996 Phys. Rev. B 54 11528 [6] Lobo C, Leon R, Marcinkevi\v{cus S, Yang W, Sercel P C,Liao X Z, Zou J and Cockayne D J H 1999 Phys. Rev. B 6016647 [7] Sanguinetti S, Henini M, Alessi M G, Capizzi M, Frigeri Pand Franchi S 1999 Phys. Rev. B 60 8276 [8] Nee T E, Wu Y F, Cheng C C and Shen H T 2006 J. Appl.Phys. 99 013506 [9] Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z Dand Xia J B 2007 J. Cryst. Growth 301 751 [10] Lee H, Yang W and Sercel P 1997 Phys. Rev. B 55 9757 [11] Yang W, Lowe-Webb R, Lee H and Sercel P 1997 Phys.Rev. B 56 13314 [12] Paul S, Roy J B and Basu P K 1990 J. Appl. Phys. 69 827 [13] Ohnesorge B, Albrecht M, Oshinowo J, Forchel A andArakawa Y 1996 Phys. Rev. B 54 11532 [14] Heitz R, Veit M, Ledentsov N, Hoffmann A, Bimberg D,Ustinov V, Kop'ev P and Alferov Z 1997 Phys. Rev. B 5610435 [15] Bockelmann U and Bastard G 1990 Phys. Rev. B 42 8947