摘要Eu3+ doped CaMoO4 phosphors were synthesized by using the solid state reaction method. The x−ray diffraction shows that all the patterns of the obtained samples are indexed to the sheelite structure. Red afterglow originating from the 5D0–7FJ (J=0,1,2,3,4) transitions of Eu3+ was observed after the samples were excited by 254 nm and the optimal Eu3+ concentration in the CaMoO4 matrix was experimentally determined to be 0.50%. A possible explanation of this afterglow property is also discussed.
Abstract:Eu3+ doped CaMoO4 phosphors were synthesized by using the solid state reaction method. The x−ray diffraction shows that all the patterns of the obtained samples are indexed to the sheelite structure. Red afterglow originating from the 5D0–7FJ (J=0,1,2,3,4) transitions of Eu3+ was observed after the samples were excited by 254 nm and the optimal Eu3+ concentration in the CaMoO4 matrix was experimentally determined to be 0.50%. A possible explanation of this afterglow property is also discussed.
KANG Feng-Wen;HU Yi-Hua**;WU Hao-Yi;JU Gui-Fang
. Red Afterglow Properties of Eu3+ in CaMoO4 Phosphor[J]. 中国物理快报, 2011, 28(10): 107201-107201.
KANG Feng-Wen, HU Yi-Hua**, WU Hao-Yi, JU Gui-Fang
. Red Afterglow Properties of Eu3+ in CaMoO4 Phosphor. Chin. Phys. Lett., 2011, 28(10): 107201-107201.
[1] Lei B F, Yue S, Zhang Y Z and Liu Y L 2010 Chin. Phys. Lett. 27 037201
[2] Wu H Y, Wang Y H, Hu Y H, Deng L Y and Xie W 2009 J. Phys. D 42 125406
[3] Ju Z H, Zhang S H, Gao X P, Tang X L, and Liu W S 2011 J. Alloys Compd. 509 8082
[4] Ju Z H, Wei R P, Zheng J G, Gao X P, Zhang S H and Liu W S 2011 Appl. Phys. Lett. 98 121906
[5] Matsuzawa T, Aoki Y, Takeuchi N and Murayama Y 1996 J. Electrochem. Soc. 43 2670
[6] Chernov V, Meléndreza R, Pedroza-Monteroa M and Yenb W M 2008 Radiat. Meas. 43 241
[7] Shi C S, Fu Y B, Zhang G B, Chen Y H, Qi Z M and Luo X X 2007 J. Lumin. 122 11
[8] Fei Q, Chang C K and Mao D L 2005 J. Alloys Compd. 390 133
[9] Pan W, Ning G L, Zhang X, Wang J, Lin Y and Ye J W 2008 J. Lumin. 128 1975
[10] Li Y Q, van Steen J E J, van Krevel J W H, Botty G, Delsing A C A, DiSalvo F J, With G de and Hintzen H T 2006 J. Alloys Compd. 417 273
[11] Piao X Q, Machida K I, Horikawa T and Yun B 2010 J. Lumin. 130 8
[12] Zhang M, Wang J, Zhang Z, Zhang Q and Su Q 2008 Appl. Phys. B 93 829
[13] Toquin R Le and Cheetham A K 2006 Chem. Phys. Lett. 423 352
[14] Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T and Yamamoto H 2006 Electrochem. Solid-state Lett. 9 H22
[15] Teng X M, Liu Y H, Liu Y Z, Hu Y S, He H Q and Zhuang W D 2010 J. Lumin. 130 851
[16] Wang L X, Zhang L, Huang Y D, Jia D Z and Lu J J 2009 J. Lumin. 129 1032
[17] Zhang X M, Zhang J H, Zhang X, Chen L, Lu S Z and Wang X J 2007 J. Lumin. 122 958
[18] Yan S X, Zhang J H, Zhang X, Lu S Z, Ren X G, Nie Z G and Wang X J 2007 J. Phys. Chem. C 111 13256
[19] Guo C F, Yang H K and Jeong J H 2010 J. Lumin. 130 1390
[20] Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H and Huang L H 2004 Chin. J. Inorg. Chem. 20 1433 (in Chinese)
[21] Hu Y S, Zhuang W D, Ye H Q, Wang D H, Zhang S S and Huang X W 2005 J. Alloys Compd. 390 226
[22] Xie A, Yuan X M, Shi Y, Wang F X and Wang J J 2009 J. Am. Ceram. Soc. 92 2258
[23] Neeraj S, Kijima N and Cheetham A K 2004 Chem. Phys. Lett. 387 2
[24] Shi S K, Gao J and Zhou J 2008 Opt. Mater. 30 1616
[25] Liao J S, You H Y, Qiu B, Wen H R, Hong R J, You W X and Xie Z P 2011 Curr. Appl. Phys. 11 503
[26] Shi F N, Meng J and Ren Y F 1996 J. Solid State Chem. 121 236
[27] Zhu Y, Zheng M T, Zeng J H, Xiao Y and Liu Y L 2009 Mater. Chem. Phys. 113 721
[28] Guo C F, Tang Q, Zhang C X, Huang D X and Su Q 2007 J. Lumin. 126 333
[29] Shalgaonkar C S and Narlikar A V 1972 J. Mater. Sci. 7 1465
[30] Sakai R, Katsumata T, Komuro S and Morikawa T 1999 J. Lumin. 85 149