Preparation and Photoluminescence Properties of Eu2+−Doped Oxyapatite-Type SrxLa10−x (SiO4)6O3−x/2
CUI Zhao-Feng1, YUAN Shuang-Long1,2**, YANG Yun-Xia1, François CHEVIRE 2**, Franck TESSIER2, CHEN Guo-Rong1
1Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 2UMR CNRS 6226 Sciences Chimiques de Rennes, équipe Verres et Céramiques, Université de Rennes 1, 35042 Rennes cedex, France
Preparation and Photoluminescence Properties of Eu2+−Doped Oxyapatite-Type SrxLa10−x (SiO4)6O3−x/2
CUI Zhao-Feng1, YUAN Shuang-Long1,2**, YANG Yun-Xia1, François CHEVIRE 2**, Franck TESSIER2, CHEN Guo-Rong1
1Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 2UMR CNRS 6226 Sciences Chimiques de Rennes, équipe Verres et Céramiques, Université de Rennes 1, 35042 Rennes cedex, France
摘要Eu2+−doped oxyapatite SrxLa10−x(SiO4)6O3−x/2 phosphors are prepared by solid-state reaction at high temperatures under reducing atmosphere. Their crystal structures and photoluminescence are investigated by x-ray diffraction (XRD) and fluorescence spectroscopy, respectively. The XRD results indicate that the samples are pure oxyapatite phase (P63/m space group). The fluorescence spectra show two peaks corresponding to two sites (4f and 6h sites) for Eu2+ in the host lattice. As the Eu2+ content influences the intensity ratio of the two observed emission peaks, the photoluminescence mechanism is discussed.
Abstract:Eu2+−doped oxyapatite SrxLa10−x(SiO4)6O3−x/2 phosphors are prepared by solid-state reaction at high temperatures under reducing atmosphere. Their crystal structures and photoluminescence are investigated by x-ray diffraction (XRD) and fluorescence spectroscopy, respectively. The XRD results indicate that the samples are pure oxyapatite phase (P63/m space group). The fluorescence spectra show two peaks corresponding to two sites (4f and 6h sites) for Eu2+ in the host lattice. As the Eu2+ content influences the intensity ratio of the two observed emission peaks, the photoluminescence mechanism is discussed.
[1] Zhang J, Liang H, Yu R, Yuan H and Su Q 2009 Mater. Chem. Phys. 114 242
[2] Vincent A, Savignat S B and Gervais F O 2007 J. Eur. Ceram. Soc. 27 1187
[3] Lin Y, Tang Z, Zhang Z and Nan C W 2003 J. Alloys Compd. 348 76
[4] Lin J and Su Q 1994 Mater. Chem. Phys. 38 98
[5] Lin J and Su Q 1995 J. Mater. Chem. 5 1151
[6] Lin J and Su Q 1994 J. Alloys Compd. 210 159
[7] Dorenbos P 2003 J. Lumin. 104 239
[8] Fang Y, Zhuang W D, Cui X Z, Hu Y S and Huang X W 2006 J. Rare Earths 24 (Suppl. 1) 145
[9] Zhang X M, Li W L and Seo H J 2009 Phys. Lett. A 373 3486
[10] Ouenzerfi R E, Goutaudier C, Cohen-Adad M T, Panczer G and Boulon G 2003 J. Lumin. 102–103 426
[11] Li Y, Chang Y, Tsai B, Chen Y and Lin Y 2006 J. Alloys Compd. 416 199
[12] Ouenzerfi R E, Panczer G, Goutaudier C, Cohen-Adad M T, Boulon G, Trabelsi-Ayedi M and Kbir-Ariguib N 2001 Opt. Mater. 16 301
[13] Seeta R R G, Jung H C, Park J Y, Moon B K, Balakrishnaiah R, Jeong J H and Kimb J H 2010 Sensors Actuators B: Chem. 146 395