The energy levels of holes in a p-type δ-doped GaAs structure under a magnetic field are theoretically calculated within the framework of the effective mass approximation for a uniform acceptor distribution. The electronic structure is calculated by solving the Schrödinger and Poisson equations self-consistently. The effect of the magnetic field on the potential profile changes the degree of the confinement and localization, and thus this behavior can be used to study these systems in regions of interest, without the need to grow many different samples. It is found that the heavy-hole subbands contain many more energy states than the light-hole ones; the population of the heavy-hole levels represents approximately 91% of all the carriers without magnetic field. With increasing magnetic field the total population of the heavy-holes increases and the number of filled states changes.
The energy levels of holes in a p-type δ-doped GaAs structure under a magnetic field are theoretically calculated within the framework of the effective mass approximation for a uniform acceptor distribution. The electronic structure is calculated by solving the Schrödinger and Poisson equations self-consistently. The effect of the magnetic field on the potential profile changes the degree of the confinement and localization, and thus this behavior can be used to study these systems in regions of interest, without the need to grow many different samples. It is found that the heavy-hole subbands contain many more energy states than the light-hole ones; the population of the heavy-hole levels represents approximately 91% of all the carriers without magnetic field. With increasing magnetic field the total population of the heavy-holes increases and the number of filled states changes.
(Surface states, band structure, electron density of states)
引用本文:
E. OZTURK. Effect of Magnetic Field on a p-Type δ-Doped GaAs Layer[J]. 中国物理快报, 2010, 27(7): 77302-077302.
E. OZTURK. Effect of Magnetic Field on a p-Type δ-Doped GaAs Layer. Chin. Phys. Lett., 2010, 27(7): 77302-077302.
[1] Schubert E F, Fischer A and Ploog K 1986 IEEE Trans. Electron Devices 33 625 [2] Ploog K, Hauser M and Fischer A 1988 Appl. Phys. A 45 233 [3] Maciel A C, Tatham M, Ryan J F, Worlock J M, Nahory R E, Harbison J P and Florez L T 1990 Surf. Sci. 228 251 [4] Ioriatti L 1990 Phys. Rev. B 41 8340 [5] Egues J C, Barbosa J C, Notari A C, Basmaji P and Ioriatti L 1991 J. Appl. Phys. 70 3678 [6] Degani M H 1991 J. Appl. Phys. 70 4362 [7] Ke M L, Rimmer J S, Hamilton B, Evan J H, Missious M, Singer K E and Zalm P 1992 Phys. Rev. B 45 14114 [8] Osvald J 2004 J. Phys. D: Appl. Phys. 37 2655 [9] Shibli S M, Scolfaro L M, Leite J R, MendonÇa C A C, Plentz F and Meneses A 1992 Appl. Phys. Lett. 60 2895 [10] Ozturk E, Ergun Y, Sari H and Sokmen I 2000 Superlattices and Microstructures 28 35 Ozturk E, Ergun Y, Sari H and Sokmen I 2001 Semicond. Sci. Technol. 16 421 Ozturk E, Ergun Y, Sari H and Sokmen I 2001 Appl. Phys. A 73 749 Ozturk E, Ergun Y, Sari H and Sokmen I 2002 J. Appl. Phys. 91 2118 Ozturk E, Sari H, Ergun Y and Sokmen I 2003 Physica B 334 1 [11] Kundrotas J, Cerskus A, Valusis G, Lachab M, Khanna S P, Harrison P and Linfield E H 2008 Acta Phys. Polon. A 113 963 [12] Mei T, Li H, Karunasiri G, Fan W J, Zhang D H, Yoon, S F and Yuan K H 2007 Infrared Phys. Technol. 50 119 [13] Nomura S, Isshiki H, Aoyagi Y and Sugano T 1996 Physica B 227 38 [14] Quivy A A, Sperandio A L, da Silva E C F and Leite J R 1999 J. Cryst. Growth 206 171 [15] Johnson M B, Koenraad P M, van der Vleuten W C, Salemink H W M and Wolter J H 1995 Phys. Rev. Lett. 75 1606 [16] Zhang W M, Halsall M P, Harmer P, Harrison P and Steer M J 2002 J. Appl. Phys. 92 6039 [17] Chang C Y, Lin W, Hsu W C, Wu T S, Chang S Z and Wang C 1991 Jpn. J. Appl. Phys. 30 1158 [18] Kuo T Y, Cunningham J E, Schubert E F, Tsang W T, Chiu T H, Run F and Fonstad C G 1988 J. Appl. Phys. 64 3324 [19] Schubert E F, Cunningham J E and Tsang W T 1987 Solid State Commun. 63 591 [20] Ploog K 1987 J. Cryst. Growth 81 304 [21] Liu D G, Fan J C, Lee C P, Chang K H and Liou D C 1993 J. Appl. Phys. 73 608 [22] Rodriguez-Vargas I and Gaggero-Sager L M 2004 Revista Mexicana de Fisica 50 614 [23] Nakazato K, Blaikie R J and Ahmed H 1994 J. Appl. Phys. 75 5123 [24] Schubert E F 1990 J. Vac. Sci. Technol. A 8 2980 [25] Zrenner A, Koch F, Williams R L, Stradling R A, Ploog K and Weinmann G1988 Semicond. Sci. Technol. 3 1203 [26] Schubert E F, Chiu T H, Cunningham J E, Telland B and Stark J B 1988 J. Electron. Mater. 17 527 [27] Gaggero-Sager L M 2002 Phys. Status Solidi 231 243 [28] Rosa A L, Scolfaro L M R, Sipahi G M, Enderlein R and Leite J R 1998 Microelectron. Engin. 43-44 489 [29] Kasapoglu E and Sokmen I 2005 Physica E 27 198 [30] Asche M, Friedland K J, Kleinert P and Kostial H 1992 Semicond. Sci. Technol. 7 923 [31] Noh J P, Idutsu Y and Otsuka N 2007 J. Crystal Growth 301-302 662 [32] Tripathi V and Kennett M P 2007 Phys. Rev. B 76 115321 [33] Idutsu Y, Noh J P, Shimogishi F and Otsuka N 2006 Phys. Rev. B 73 115306 [34] Tao Z C, Singh M and Puszkarski H 1993 Solid State Commun. 85 361 [35] Ozturk E 2009 Superlattices and Microstructures 46 752 [36] Ozturk E, Bahar M K and Sokmen I 2008 Eur. Phys. J. Appl. Phys. 41 195 [37] Ozturk E and Sokmen I 2008 Chin. Phys. Lett. 25 1415 [38] Ozturk E and Sokmen I 2004 Superlattices and Microstructures 35 95 [39] Kasapoglu E, Sari H and Sokmen I 2001 Superlattices and Microstructures 29 25 [40] Gaggero-Sager L M and Perez-Alvarez R 1996 J. Appl. Phys. 79 3351