The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect
ZHANG Xiu-Ming1, DUAN Yi-Shi2
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 2Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect
ZHANG Xiu-Ming1, DUAN Yi-Shi2
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054 2Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
In the light of the decomposition of the SU(2) gauge potential for I=1/2, we obtain the SU(2) Chern-Simons current over S4, i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern-Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of Φ-mapping under the condition that the zero points of field Ψ are regular points.
In the light of the decomposition of the SU(2) gauge potential for I=1/2, we obtain the SU(2) Chern-Simons current over S4, i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern-Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of Φ-mapping under the condition that the zero points of field Ψ are regular points.
ZHANG Xiu-Ming;DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect[J]. 中国物理快报, 2010, 27(7): 77301-077301.
ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect. Chin. Phys. Lett., 2010, 27(7): 77301-077301.
[1] Zhang S C and Hu J P 2001 Science 294 823 [2] Belavin A et al 1975 Phys. Lett. B 59 85 [3] Jackiw R and Rebbi C 1976 Phys. Rev. D 14 517 [4] Yang C N 1978 J. Math. Phys. 19 320 [5] Laughlin R B 1983 Phys. Rev. Lett. 50 1395 [6] Haldane F D M 1983 Phys. Rev. Lett. 51 605 [7] Fabinger M 2002 J. High Energy Phys. 05 037 [8] Karabali D and Nair V P 2002 Nucl. Phys. B 641 533 [9] Chen Y X et al 2002 Nucl. Phys. B 638 220 [10] Bernebig B A et al 2003 Phys. Rev. Lett. 91 236803 [11] Murakami S N et al 2003 Science 301 1348 [12] Wolf S A et al 2001 Science 294 1488 Rashba E I 2003 Phys. Rev . B 68 241315 [13] Zhang S C et al 1989 Phys. Rev. Lett. 62 82 [14] Zhang S C 1992 Int. J. Mod. Phys . B 6 25 [15] Bernevig B A et al 2002 Ann. Phys. 300 185 [16] Duan Y S and Meng X H 1993 J. Math. Phys. 34 1149 Duan Y S et al 1998 Nucl. Phys. B 514 705 Li S et al 2000 Phys. Lett . B 487 201 [17] Cho Y M 1980 Phys. Rev. D 21 1080 Cho Y M 1981 Phys. Rev . D 23 2415 Cho Y M 1980 Phys. Rev. Lett. 44 1115 Cho Y M 1981 Phys. Rev. Lett. 46 302 Cho Y M 2001 Phys. Rev. Lett. 87 252001 Cho Y M et al arXiv:hep-th/9905215 Cho Y M arXiv:hep-th/9906198 Cho Y M et al 2001 Phys. Soc. 38 151 Cho Y M arXiv:cond-mat/0112325 Cho Y M arXiv:cond-mat/0112498 [18] Faddeev L and Niemi A J 1997 Nature 387 58 Faddeev L and Niemi A J 1999 Phys. Lett . B 464 90 Faddeev L and Niemi A J 1999 Phys. Lett . B 449 214 Faddeev L and Niemi A J 1999 Phys. Rev. Lett. 82 1624 [19] Zhong W J and Duan Y S 2008 Chin. Phys. Lett. 25 1534 Duan Y S et al 2005 Chin. Phys. Lett. 22 2047 [20] Liang W F et al 2008 Chin. Phys. Lett. 25 4227 [21] Gheorghe1 Z et al 2008 Chin. Phys. Lett. 25 433 [22] Duan Y S 1984 SLAC-PUB-3301 [23] Schouten J A 1951 Tensor Analysis for Physicists (Oxford: Oxford University) [24] Zee A arXiv:cond-mat/9501022