We perform a first-principles calculation based on density functional theory to investigate the interface between single layer graphene and metal oxides. Our study reveals that the monolayer graphene becomes semiconducting by single crystal SiO2 and Al2O3 contact, with energy gaps to ~0.9 and ~1.8 eV, respectively. We find the gap originates from the breakage of π bond integrity, whose extent is related to the interface atom configuration. We believe that our results highlight a promising direction for the feasibility to apply large scale graphene layers as building blocks in future electronics devices.
We perform a first-principles calculation based on density functional theory to investigate the interface between single layer graphene and metal oxides. Our study reveals that the monolayer graphene becomes semiconducting by single crystal SiO2 and Al2O3 contact, with energy gaps to ~0.9 and ~1.8 eV, respectively. We find the gap originates from the breakage of π bond integrity, whose extent is related to the interface atom configuration. We believe that our results highlight a promising direction for the feasibility to apply large scale graphene layers as building blocks in future electronics devices.
(Surface states, band structure, electron density of states)
引用本文:
LIU Han;SUN Qing-Qing;CHEN Lin;XU Yan;DING Shi-Jin;ZHANG Wei;ZHANG Shi-Li. Band Structures of Metal-Oxide Capped Graphene: A First Principles Study[J]. 中国物理快报, 2010, 27(7): 77201-077201.
LIU Han, SUN Qing-Qing, CHEN Lin, XU Yan, DING Shi-Jin, ZHANG Wei, ZHANG Shi-Li. Band Structures of Metal-Oxide Capped Graphene: A First Principles Study. Chin. Phys. Lett., 2010, 27(7): 77201-077201.
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, A K Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [3] Shon N H and Ando T 1998 J. Phys. Soc. Jpn. 67 2421 [4] Ando T, Zheng Y and Suzuura H 2002 J. Phys. Soc. Jpn. 71 1318 [5] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801 [6] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620 [7] Brink J V D 2007 Nature Nanotechonol. 2 199 [8] Son Y W, Cohen M L, and Louie S G 2006 Nature 444 347 [9] Ohta T, Bostwick T, Seyller T, Horn K and Rotenberg E 2006 Science 313 951 [10] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610 [11] Zhou S Y, Gweon G H, Fedorov A V, First P N, Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nature Mater. 6 770 [12] Mattausch A and Pankratov O 2007 Phys. Rev. Lett. 99 076802 [13] Farjam M and Rafii-Tabar H 2009 Phys. Rev. B 79 045417 [14] Shemella P and Nayak S K 2009 Appl. Phys. Lett. 94 032101 [15] Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803 [16] Sun Q Q, Laha A, Ding S J, Zhang D W, Osten H J and Fissel A 2008 Appl. Phys. Lett. 92 152908 [17] Kresse G and Hafner 1993 J. Phys. Rev. B 47 558 [18] Kresse G and Furthmüller 1996 J. Phys. Rev. B 54 11169 [19] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [20] Tsai W, Carter R J, Nohira H, Caymax M, Conard T, Cosnier V, DeGendt S, Heyns M, Petry J, Richard O, Vandervorst W, Young E, Zhao C, Maes J, Tuominen M, Schulte W H, Garfunkel E~and Gustafsson T 2003 Microelectron. Engin. 65 259 [21] Yazyev O V 2008 Phys. Rev. Lett. 101 037203 [22] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 [23] Ito J, Nakamura J and Natori A 2008 J. Appl. Phys. 103 113712