Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO$_{3}$ Interface
Cheng Cao1,3†, Shengru Chen1,2†, Jun Deng1, Gang Li1,4, Qinghua Zhang1, Lin Gu1, Tian-Ping Ying1,4, Er-Jia Guo1,2,4*, Jian-Gang Guo1,4*, and Xiaolong Chen1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract:Two-dimensional electron gas (2DEG) with high electron mobility is highly desired to study the emergent properties and to enhance future device performance. Here we report the formation of 2DEG with high mobility at the interface between rock-salt BaO and perovskite SrTiO$_{3}$. The interface consists of the ionically compensated BaO$_{1-\delta}$ layer and the electronically compensated TiO$_{2}$ layer, which is demonstrated as a perfect interface without lattice mismatch. The so-formed interface features metallic conductivity with ultralow square resistance of $7.3 \times 10^{-4}\,\Omega /\square$ at 2 K and high residual resistance ratios $R_{\rm 300\,K}/R_{\rm 2\,K}$ up to 4200. The electron mobility reaches 69000 cm$^{2}$$\cdot$V$^{-1}$$\cdot$s$^{-1}$ at 2 K, leading to Shubnikov–de Haas oscillations of resistance. Density functional theory calculations reveal that the effective charge transfers from BaO to the Ti 3$d_{xy}$ orbital occur at the interface, leading to the conducting TiO$_{2}$ layer. Our work unravels that BaO can adapt itself by removing oxygen to minimize the lattice mismatch and to provide substantial carriers to SrTiO$_{3}$, which is the key to forming 2DEGs with high mobility at the interfaces.
. [J]. 中国物理快报, 2022, 39(4): 47301-047301.
Cheng Cao, Shengru Chen, Jun Deng, Gang Li, Qinghua Zhang, Lin Gu, Tian-Ping Ying, Er-Jia Guo, Jian-Gang Guo, and Xiaolong Chen. Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO$_{3}$ Interface. Chin. Phys. Lett., 2022, 39(4): 47301-047301.
Herranz G, Basletic M, Bibes M, Ranchal R, Hamzic A, Tafra E, Bouzehouane K, Jacquet E, Contour J P, Barthélémy A, and Fert A 2006 Phys. Rev. B73 064403
[3]
Kalisky B, Bert J A, Klopfer B B, Bell C, Sato H K, Hosoda M, Hikita Y, Hwang H Y, and Moler K A 2012 Nat. Commun.3 922
Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, and Bhattacharya A 2021 Science371 716
Cantoni C, Gazquez J, Granozio F M, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, and Maccariello D 2012 Adv. Mater.24 3952
[13]
Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, and Eom C B 2012 Nano Lett.12 1765
[14]
Huang Z, Han K, Zeng S, Motapothula M, Borisevich A Y, Ghosh S, Lu W, Li C, Zhou W, Liu Z, Coey M, Venkatesan T, and Ariando 2016 Nano Lett.16 2307
Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A, and Fert A 2007 Phys. Rev. Lett.98 216803
[18]
Caviglia A D, Gariglio S, Cancellieri C, Sacepe B, Fete A, Reyren N, Gabay M, Morpurgo A F, and Triscone J M 2010 Phys. Rev. Lett.105 236802
Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Buchner B, Shen B G, Linderoth S, and Pryds N 2013 Nat. Commun.4 1371
Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett.58 908
[28]
Zhao Z X, Chen L Q, Yang Q S, Huang Y H, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L H, Guo S Q, Li S L, and Bi J Q 1987 Kexue Tongbao32 661 (in Chinese)
[29]
Cava R J, Batlogg B, Vandover R B, Murphy D W, Sunshine S, Siegrist T, Remeika J P, Rietman E A, Zahurak S, and Espinosa G P 1987 Phys. Rev. Lett.58 1676
[30]
Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, and Kwok W K 1990 Phys. Rev. B41 1863
Zhang J, Ok J M, Pai Y Y, Lapano J, Skoropata E, Mazza A R, Li H, Huon A, Yoon S, Lawrie B, Brahlek M, Ward T Z, Eres G, Miao H, and Lee H N 2021 Phys. Rev. B104 L161404
[46]
Rubi K, Gosteau J, Serra R, Han K, Zeng S, Huang Z, Warot-Fonrose B, Arras R, Snoeck E, A, Goiran M, and Escoffier W 2020 npj Quantum Mater.5 9
Schuetz P, Christensen D V, Borisov V, Pfaff F, Scheiderer P, Dudy L, Zapf M, Gabel J, Chen Y Z, Pryds N, Rogalev V A, Strocov V N, Schlueter C, Lee T L, Jeschke H O, Valenti R, Sing M, and Claessen R 2017 Phys. Rev. B96 161409