Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure
Yong-Hua Cao1,2,3, Jin-Tao Bai1,2, and Hong-Jian Feng1*
1School of Physics, Northwest University, Xi'an 710127, China 2Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China 3School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
Abstract:Fundamental understanding of interfacial charge behaviors is of great significance for the optoelectronic and photovoltaic applications. However, the crucial roles of perovskite terminations in charge transport processes have not been completely clear. We investigate the charge transfer behaviors of the CsPbI$_{3}$/black phosphorus (BP) van der Waals heterostructure by using the density functional theory calculations with a self-energy correction. The calculations at the atomic level demonstrate the type-II band alignments of the CsPbI$_{3}$/BP heterostructure, which make electrons transfer from the perovskite side to monolayer BP. Moreover, the stronger interaction and narrower physical separation of the interfaces can lead to higher charge tunneling probabilities in the CsPbI$_{3}$/BP heterostructure. Due to different electron affinities, the PbI$_{2}$-terminated perovskite slab tends to collect electrons from the adjacent materials, whereas the CsI-termination prefers to inject electrons into transport materials. In addition, the interface coupling effect enhances the visible-light-region absorption of the CsPbI$_{3}$/BP heterostructure. This study highlights the importance of the perovskite termination in the charge transport processes and provides theoretical guidelines to develop high-performance photovoltaic and optoelectronic devices.
Bi D, Tress W, Dar M I, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Baena J P C, Zakeeruddin S M, Nazeeruddin M K, Grätzel M and Hagfeldt A 2016 Sci. Adv.2 e1501170
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I I 2017 Science356 1376
[4]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A3 19688
[5]
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science347 522
[6]
Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science342 344
[7]
Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M and Moser J E 2014 Nat. Photon.8 250
Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon.13 460
[11]
Tan H, Jain A, Voznyy O, Lan X, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science355 722
[12]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I I, Lee J and Seo J 2018 Nat. Energy3 682
Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grumlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science331 568