A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures
Ying Zhou1,2†, Long Chen1,2†, Gang Wang1,2,3*, Yu-Xin Wang1,2, Zhi-Chuan Wang1,2, Cong-Cong Chai1,2, Zhong-Nan Guo4, Jiang-Ping Hu1,2,3*, and Xiao-Long Chen1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract:Mn-based superconductors are very rare and their superconductivity has only been reported in three-dimensional MnP and quasi-one-dimensional KMn$_{6}$Bi$_{5}$ and RbMn$_{6}$Bi$_{5}$ with [Mn$_{6}$Bi$_{5}$]$^{-}$ columns under high pressures. Here we report the synthesis, magnetism, electrical resistivity, and specific heat capacity of the newly discovered quasi-one-dimensional NaMn$_{6}$Bi$_{5}$. Compared with other $A$Mn$_{6}$Bi$_{5}$ ($A$ = K, Rb, and Cs), NaMn$_{6}$Bi$_{5}$ has abnormal Bi–Bi bond lengths and two antiferromagnetic-like transitions at 47.3 K and 51.8 K. Anisotropic resistivity and low-temperature non-Fermi liquid behavior are observed. Heat capacity measurement reveals that the Sommerfeld coefficient for NaMn$_{6}$Bi$_{5}$ is unusually large. Using first-principles calculations, an unusual enhancement of density of states near the Fermi level is demonstrated for NaMn$_{6}$Bi$_{5}$. The features make NaMn$_{6}$Bi$_{5}$ a more suitable platform to explore the interplay of magnetism and superconductivity.
Gao Q, Zhao L, Hu C, Yan H T, Chen H, Cai Y Q, Li C, Ai P, Liu J, Huang J W, Rong H T, Song C Y, Yin C H, Wang Q Y, Huang Y, Liu G D, Xu Z Y, and Zhou X J 2020 Chin. Phys. Lett.37 087402
[15]
Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, and Luo J L 2014 Nat. Commun.5 5508
[16]
Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. X5 011013
[17]
Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. B91 020506
[18]
Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, and Cao G H 2015 Sci. Chin. Mater.58 16
Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, and Uwatoko Y 2016 Phys. Rev. B93 100405(R)
[22]
Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature572 624
Bao J K, Tang Z T, Jun H J, Liu J Y, Liu Y, Li L, Li Y K, Xu Z A, Feng C M, Chen H J, Chung D Y, Dravid V P, Cao G H, and Kanatzidis M G 2018 J. Am. Chem. Soc.140 4391
Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Uwatoko Y, Chen G F, Dong X L, Zhao Z X, and Cheng J G 2022 arXiv:2201.06053 [cond-mat.supr-con]
[27]
Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S, and Cheng J G 2022 arXiv:2201.13336 [cond-mat.supr-con]