Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor
Hui-Fei Zhai1,2*, Bo Lin1, Pan Zhang2, Hao Jiang3, Yu-Ke Li4, and Guang-Han Cao2
1Department of Physics, Northwest University, Xi'an 710127, China 2Department of Physics, Zhejiang University, Hangzhou 310027, China 3School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 4Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
Abstract:Superconductivity below 0.3 K and a charge-density-wave-like (CDW-like) anomaly at 280 K were observed in EuBiS$_{2}$F recently. Here we report a systematic study of structural and transport properties in Eu$_{0.5}Ln_{0.5}$BiS$_{2}$F ($Ln$ = La, Ce, Pr, Nd, Sm) by electrical resistivity, magnetization, and specific heat measurements. The lattice constants have a significant change upon rare earth substitution for Eu, suggesting an effective doping. As $Ln$ is changed from Sm to La, the superconducting transition temperature $T_{\rm c}$ increases from 1.55 K to 2.8 K. In contrast to the metallic parent compound, the temperature dependence of electrical resistivity displays semiconducting-like behavior for all the Eu$_{0.5}Ln_{0.5}$BiS$_{2}$F samples. Meanwhile, the CDW-like anomaly observed in EuBiS$_{2}$F is completely suppressed. Unlike the mixed valence state in the undoped compound, Eu ions in these rare-earth-doped samples are mainly divalent. A specific anomaly at 1.3 K resembling that in EuBiS$_{2}$F suggests the coexistence of superconductivity and spin glass state for Eu$_{0.5}$La$_{0.5}$BiS$_{2}$F. Coexistence of ferromagnetic order and superconductivity is found below 2.2 K in Eu$_{0.5}$Ce$_{0.5}$BiS$_{2}$F samples. Our results supplies a rich diagram showing that many interesting properties can be induced in BiS$_{2}$-based compounds.
(Effects of crystal defects, doping and substitution)
引用本文:
. [J]. 中国物理快报, 2021, 38(4): 47402-.
Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor. Chin. Phys. Lett., 2021, 38(4): 47402-.
Demura S, Mizuguchi Y, Deguchi K, Okazaki H, Hara H, Watanabe T, Denholme S J, Fujioka M, Ozaki T, Fujihisa H, Gotoh Y, Miura O, Yamaguchi T, Takeya H and Takano Y 2013 J. Phys. Soc. Jpn.82 033708
Lin X, Ni X X, Chen B, Xu X F, Yang X X, Dai J H, Li Y K, Yang X J, Luo Y K, Tao Q, Cao G H and Xu Z A 2013 Phys. Rev. B87 020504
[8]
Krzton-Maziopa A, Guguchia Z, Pomjakushina E, Pomjakushin V, Khasanov R, Luetkens H, Biswas P K, Amato A, Keller H and Conder K 2014 J. Phys.: Condens. Matter26 215702
[9]
Zhai H F, Tang Z T, Jiang H, Xu K, Zhang K, Zhang P, Bao J K, Sun Y L, Jiao W H, Nowik I, Felner I, Li Y K, Xu X F, Tao Q, Feng C M, Xu Z A and Cao G H 2014 Phys. Rev. B90 064518
[10]
Zhai H F, Zhang P, Wu S Q, He C Y, Tang Z T, Jiang H, Sun Y L, Bao J K, Nowik I, Felner I, Zeng Y W, Li Y K, Xu X F, Tao Q, Xu Z A and Cao G H 2014 J. Am. Chem. Soc.136 15386
Lin L, Yuke L, Yuefeng J, Haoran H, Bin C, Xiaofeng X, Jianhui D, Li Z, Xiaojun Y, Huifei Z, Guanghan C and Zhuan X 2015 Phys. Rev. B91 014508
[28]
Zeng L K, Wang X B, Ma J, Richard P, Nie S M, Weng H M, Wang N L, Wang Z, Qian T and Ding H 2014 Phys. Rev. B90 054512
[29]
Mizuguchi Y, Miura A, Kajitani J, Hiroi T, Miura O, Tadanaga K, Kumada N, Magome E, Moriyoshi C and Kuroiwa Y 2015 Sci. Rep.5 14968
[30]
Iwasaki S, Kawai Y, Takahashi S, Suda T, Wang Y, Koshino Y, Ogura F, Shibayama Y, Kurosawa T, Oda M, Ido M and Momono N 2019 J. Phys. Soc. Jpn.88 041005