We study zero-bias conductance (ZBC) spectra of a normal-metal/insulator/singlet (and triplet) ferromagnetic superconductor as a function of potential strength of interface in the Blonder–Tinkham–Klapwijk (BTK) theory framework. We consider possible pairing states including spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP) and spin triplet equal spin pairing (ESP). It is found that ZBC as a function of potential strength of interface shows a clear difference between SWP, OSP and ESP states. These results may serve as a useful tool for discriminating pairing states in ferromagnetic superconductors.
We study zero-bias conductance (ZBC) spectra of a normal-metal/insulator/singlet (and triplet) ferromagnetic superconductor as a function of potential strength of interface in the Blonder–Tinkham–Klapwijk (BTK) theory framework. We consider possible pairing states including spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP) and spin triplet equal spin pairing (ESP). It is found that ZBC as a function of potential strength of interface shows a clear difference between SWP, OSP and ESP states. These results may serve as a useful tool for discriminating pairing states in ferromagnetic superconductors.
[1] Andreev A F 1964 Sov. Phys. JETP 19 1228 [2] Blonder G, Tinkham M and Klapwijk T 1982 Phys. Rev. B 25 4515 [3] Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451 [4] Kashiwaya S, Tanaka Y, Koyanagi M and Kajimura K 1996 Phys. Rev. B 53 2667 [5] Hu C 1994 Phys. Rev. Lett 72 1526 [6] Yang J and Hu C 1994 Phys. Rev. B 50 16766 [7] Ekin J, Xu Y, Mao S and Venkatesan T, Face D, Eddy M and Wolf S 1997 Phys. Rev. B 56 13746 [8] Wei1 J, Yeh1 N, Garrigus D and Strasik M 1998 Phys. Rev. Lett. 81 2542 [9] Alff L, Beck A, Gross R, Marx A, Kleefisch S, Bauch Th, Sato H, Naito M and Koren G 1998 Phys. Rev. B 58 11197 [10] Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G, Huxley A, Shelkin I, Braithwaite D and Flouquet J 2000 Nature 406 587 [11] Pfleiderer C, Uhlarz M, Hayden S M, Vollmer R, Lohneysen H V, Bernhoeft N R and Lonzarich G G 2001 Nature 412 58 [12] Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison J, Lhotel E and Paulsen C 2001 Nature 413 613 [13] Abrikosov A A 2001 J. Phys. : Condens. Matter 13 L943 [14] Suhl H 2001 Phys. Rev. Lett. 87 167007 [15] Karchev N I, Blagoev K B, Bedell K S and Littlewood P B 2001 Phys. Rev. Lett. 86 846 [16] Singh D J and Mazin I I 2002 Phys. Rev. Lett. 88 187004 [17] Cuoco M, Gentile P and Noce C 2003 Phys. Rev. Lett. 91 197003 [18] Dahal H P, Jackiewicz J and Bedell K S 2005 Phys. Rev. B 72 172506 [19] Kotegawa H, Harada A, Kawasaki S, Kawasaki Y, Kitaoka Y, Haga Y, Yamamoto E, Onuki Y, Itoh K M, Haller E E and Harima H 2005 J. Phys. Soc. Jpn. 74 705 [20] Blagoev K B, Engelbrecht J R and Bedell K S 2003 Philos. Mag. Lett. 78 169 [21] Asano Y, Tanaka Y, Golubov A and Kashiwaya S 2007 Phys. Rev. Lett. 99 067005 [22] Powell B J, Annett J F and Gyorffy B L 2003 J. Phys. A 36 9289 [23] Yokoyama T and Tanaka Y 2007 Phys. Rev. B 75 132503 [24] Emamipour H and Abolhassani M 2010 Supercond. Sci. Technol. 23 105001 [25] Emamipour H and Abolhassani M 2011 Commun. Theor. Phys. 55 171