Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation
Yutao Jiang1,2†, Ze Yu1,2†, Yuxin Wang1,2, Tenglong Lu1,2, Sheng Meng1,2,3*, Kun Jiang1,3*, and Miao Liu1,3,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The CsV$_{3}$Sb$_{5}$ kagome lattice holds the promise for manifesting electron correlation, topology and superconductivity. However, by far only three CsV$_{3}$Sb$_{5}$-like kagome materials have been experimentally spotted. We enlarge this family of materials to 1386 compounds via element species substitution, and the further screening process suggests that 28 promising candidates have superior thermodynamic stability, hence they are highly likely to be synthesizable. Moreover, these compounds possess several unique electronic structures, and can be categorized into five non-magnetic and three magnetic groups accordingly. It is our hope that this work can greatly expand the viable phase space of the CsV$_{3}$Sb$_{5}$-like materials for investigating or tuning the novel quantum phenomena in kagome lattice.
Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature602 245
Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature (in press)