Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations
Lixuesong Han1†, Xianbiao Shi2,3†, Jinlong Jiao4, Zhenhai Yu1, Xia Wang1,5, Na Yu1,5, Zhiqiang Zou1,5, Jie Ma4, Weiwei Zhao2,3, Wei Xia1,6*, and Yanfeng Guo1,6*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2State Key Laboratory of Advanced Welding & Joining and Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China 3Shenzhen Key Laboratory of Flexible Printed Electronics Techniology, Harbin Institute of Technology, Shenzhen 518055, China 4Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 5Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 6ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Abstract:We report the nontrivial topological states in an intrinsic type-II superconductor BaSn$_{\boldsymbol{5}}$ ($T_{\rm{c}} \sim 4.4$ K) probed by measuring the magnetization, specific heat, de Haas–van Alphen (dHvA) effect, and by performing first-principles calculations. The first-principles calculations reveal a topological nodal ring structure centered at the $H$ point in the $k_{\rm{z}} = \pi$ plane of the Brillouin zone, which could be gapped by spin-orbit coupling (SOC), yielding relatively small gaps below and above the Fermi level of about 0.04 eV and 0.14 eV, respectively. The SOC also results in a pair of Dirac points along the $\varGamma$–$A$ direction, located at $\sim $0.2 eV above the Fermi level. The analysis of the dHvA quantum oscillations supports the calculations by revealing a nontrivial Berry phase originating from the hole and electron pockets related to the bands forming the Dirac cones. Thus, our study provides an excellent avenue for investigating the interplay between superconductivity and nontrivial topological states.
Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, and Xue Q K 2012 Science336 52
[12]
Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, and Jia J F 2015 Phys. Rev. Lett.114 017001
[13]
Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett.116 257003
[14]
Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science360 182
[15]
Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, and Fang Z 2015 Phys. Rev. B92 115119
[16]
Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, and Ding H 2019 Nat. Phys.15 1181
[17]
Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, and Gao H J 2018 Science362 333
Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X8 041056
[20]
Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F, Kondo T, Du S, Cao G H, Shin S, Fu L, Yin Z, Gao H J, and Ding H 2020 Nat. Commun.11 5688
[21]
Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J, and Ding H 2021 Nat. Commun.12 4146
[22]
Xia W, Shi X B, Zhang Y, Su H, Wang Q, Ding L C, Chen L M, Wang X, Zou Z Q, Yu N, Pi L, Hao Y F, Li B, Zhu Z W, Zhao W W, Kou X F, and Guo Y F 2020 Phys. Rev. B101 155117
[23]
Chen C, Liang A J, Liu S, Nie S M, Huang J W, Wang M X, Li Y W, Pei D, Yang H F, Zheng H J, Zhang Y, Lu D H, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X F, Yang L X, Guo Y F, Wang Z J, Yuan H T, Liu Z K, and Chen Y L 2020 Matter3 2055
[24]
Zhang G N, Shi X B, Liu X L, Xia W, Su H, Chen L M, Wang X, Yu N, Zou Z Q, Zhao W W, and Guo Y F 2020 Chin. Phys. Lett.37 087101
[25]
Huang Z, Shi X B, Zhang G N, Liu Z T, Soohyun C, Jiang Z C, Liu Z H, Liu J S, Yang Y C, Xia W, Zhao W W, Guo Y F, and Shen D W 2021 Chin. Phys. Lett.38 107403
[26]
Huang K, Luo A Y, Chen C, Zhang G N, Liu X L, Li Y W, Wu F, Cui S T, Sun Z, Jozwiak C, Bostwick A, Rotenberg E, Yang H F, Yang L X, Xu G, Guo Y F, Liu Z K, and Chen Y L 2021 Phys. Rev. B103 155148
[27]
Xu L X, Xia Y Y Y, Liu S, Li Y W, Wei L Y, Wang H Y, Wang C W, Yang H F, Liang A J, Huang K, Deng T, Xia W, Zhang X, Zheng H J, Chen Y J, Yang L X, Wang M X, Guo Y F, Li G, Liu Z K, and Chen Y L 2021 Phys. Rev. B103 L201109
[28]
Yang H F, Liu X L, Nie S M, Shi W J, Huang K, Zheng H J, Zhang J, Li Y W, Liang A J, Wang M X, Yang L X, Guo Y F, L, Z K, and Chen Y L 2021 Phys. Rev. B104 L220501
[29]
Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, and Xue Q K 2019 Nat. Phys.15 1046
Siddiquee K A M H, Munir R, Dissanayake C, Hu X Z, Yadav S, Takano Y, Choi E S, Le D, Rahman T S, and Nakajima Y 2021 arXiv:2103.08039v1 [cond-mat.supr-con]