Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$
Zhe Huang1,2,3 , Xianbiao Shi4,5 , Gaoning Zhang3 , Zhengtai Liu1 , Soohyun Cho1 , Zhicheng Jiang1 , Zhonghao Liu1 , Jishan Liu1* , Yichen Yang1 , Wei Xia3,6 , Weiwei Zhao4,5 , Yanfeng Guo3* , and Dawei Shen1,2*
1 Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China4 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China5 Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China6 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Abstract :Signatures of topological superconductivity (TSC) in superconducting materials with topological nontrivial states prompt intensive researches recently. Utilizing high-resolution angle-resolved photoemission spectroscopy and first-principles calculations, we demonstrate multiple Dirac fermions and surface states in superconductor BaSn$_3$ with a critical transition temperature of about 4.4 K. We predict and then unveil the existence of two pairs of type-I topological Dirac fermions residing on the rotational axis. Type-II Dirac fermions protected by screw axis are confirmed in the same compound. Further calculation for the spin helical texture of the observed surface states originating from the Dirac fermions gives an opportunity for realization of TSC in one single material. Hosting multiple Dirac fermions and topological surface states, the intrinsic superconductor BaSn$_3$ is expected to be a new platform for further investigation of topological quantum materials as well as TSC.
收稿日期: 2021-07-14
Editors Suggestion
出版日期: 2021-09-26
:
74.25.Jb
(Electronic structure (photoemission, etc.))
71.20.-b
(Electron density of states and band structure of crystalline solids)
71.18.+y
(Fermi surface: calculations and measurements; effective mass, g factor)
引用本文:
. [J]. 中国物理快报, 2021, 38(10): 107403-.
Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$. Chin. Phys. Lett., 2021, 38(10): 107403-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/10/107403
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I10/107403
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Alicea J 2012 Rep. Prog. Phys. 75 076501
[3] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[4] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
[5] Stanescu T D and Tewari S 2013 J. Phys.: Condens. Matter 25 233201
[6] Aguado R 2017 Riv. Nuovo Cimento 40 523
[7] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[8] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[9] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[10] Sato M 2010 Phys. Rev. B 81 220504
[11] Hsieh T H and Fu L 2012 Phys. Rev. Lett. 108 107005
[12] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[13] Alicea J 2010 Phys. Rev. B 81 125318
[14] Sau J D, Lutchyn R M, Tewari S, and Sarma S D 2010 Phys. Rev. Lett. 104 040502
[15] Lutchyn R M, Sau J D, and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[16] Lutchyn R M, Bakkers E P, Kouwenhoven L P, Krogstrup P, Marcus C M, and Oreg Y 2018 Nat. Rev. Mater. 3 52
[17] Frolov S M, Manfra M J, and Sau J D 2020 Nat. Phys. 16 718
[18] Kashiwaya S, Kashiwaya H, Kambara H, Furuta T, Yaguchi H, Tanaka Y, and Maeno Y 2011 Phys. Rev. Lett. 107 077003
[19] Jang J, Ferguson D G, Vakaryuk V, Budakian R, Chung S B, Goldbart P M, and Maeno Y 2011 Science 331 186
[20] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, and Cava R J 2010 Phys. Rev. Lett. 104 057001
[21] Wray L A, Xu S Y, Xia Y, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J, and Hasan M Z 2010 Nat. Phys. 6 855
[22] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, and Ando Y 2011 Phys. Rev. Lett. 107 217001
[23] Matano S, Kriener M, Segawa K, Ando Y, and Zheng G Q 2016 Nat. Phys. 12 852
[24] Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, and Maeno Y 2017 Nat. Phys. 13 123
[25] Liu Z, Yao X, Shao J, Zuo M, Pi L, Tan S, Zhang C, and Zhang Y 2015 J. Am. Chem. Soc. 137 10512
[26] Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R, and Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803
[27] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X et al. 2012 Science 336 52
[28] Wang E, Ding H, Fedorov A V, Yao W, Li Z, Lv Y F, Zhao K, Zhang L G, Xu Z, Schneeloch J et al. 2013 Nat. Phys. 9 621
[29] Cho S, Dellabetta B, Yang A, Schneeloch J, Xu Z, Valla T, Gu G, Gilbert M J, and Mason N 2013 Nat. Commun. 4 1689
[30] Oostinga J B, Maier L, Schüffelgen P, Knott D, Ames C, Brüne C, Tkachov G, Buhmann H, and Molenkamp L W 2013 Phys. Rev. X 3 021007
[31] Finck A D K, Kurter C, Hor Y S, and Van Harlingen D J 2014 Phys. Rev. X 4 041022
[32] Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, and Yacoby A 2014 Nat. Phys. 10 638
[33] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P, and Kouwenhoven L P 2012 Science 336 1003
[34] Rokhinson L P, Liu X, and Furdyna J K 2012 Nat. Phys. 8 795
[35] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, and Shtrikman H 2012 Nat. Phys. 8 887
[36] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, and Xu H Q 2012 Nano Lett. 12 6414
[37] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, and Marcus C M 2013 Phys. Rev. B 87 241401
[38] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, and Li X 2013 Phys. Rev. Lett. 110 126406
[39] Lee E J, Jiang X, Houzet M, Aguado R, Lieber C M, and De Franceschi S 2014 Nat. Nanotechnol. 9 79
[40] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, and Yazdani A 2014 Science 346 602
[41] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C M 2016 Nature 531 206
[42] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557
[43] Zhang H, Gül Ö, Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, De Vries F K, Van Veen J, De Moor M W et al. 2017 Nat. Commun. 8 16025
[44] Zhang H, Liu C X, Gazibegovic S, Di X, Logan J A, Wang G, Van Loo N, Bommer J D, De Moor M W, Car D et al. 2018 Nature 556 74
[45] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, and Xue Q K 2019 Nat. Phys. 15 1046
[46] Chen C, Liang A, Liu S, Nie S, Huang J, Wang M, Li Y, Pei D et al. 2020 Matter 3 2055
[47] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Lou X et al. 2018 Phys. Rev. X 8 041056
[48] Neupane M, Alidoust N, Hosen M M et al. 2016 Nat. Commun. 7 13315
[49] Huang K and Luo A Y, Chen C et al. 2021 Phys. Rev. B 103 155148
[50] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T et al. 2018 Science 360 182
[51] Wang D, Kong L, Fan P, Chen H, Zhu S et al. 2018 Science 362 333
[52] Gray M J, Freudenstein J, Zhao S Y F, Connor R O, Jenkins S et al. 2019 Nano Lett. 19 4890
[53] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, and Tamegai T 2002 Nat. Mater. 1 1
[54] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P et al. 2019 Nat. Phys. 15 1181
[55] Wang Z, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K, and Madhavan V 2020 Science 367 104
[56] Zhu S, Kong L, Cao L, Chen H, Papaj M et al. 2020 Science 367 189
[57] Kawakami T and Sato M 2019 Phys. Rev. B 100 094520
[58] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y et al. 2019 Nat. Phys. 15 41
[59] Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K, and Sheet G 2016 Nat. Mater. 15 32
[60] Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J, and Wang J 2016 Nat. Mater. 15 38
[61] He L, Jia Y, Zhang S, Hong X, Jin C, and Li S 2016 npj Quantum Mater. 1 16014
[62] Luo X, Shao D F, Pei Q L, Song J Y, Hu L, Han Y Y, Zhu X B, Song W H, Lu W J, and Sun Y P 2015 J. Mater. Chem. C 3 11432
[63] Zhu Y L, Hu J, Womack F N, Graf D, Wang Y, Adams P W, and Mao Z Q 2019 J. Phys.: Condens. Matter 31 245703
[64] Siddiquee K H, Munir R, Dissanayake C, Hu X, Yadav S, Takano Y, Choi E S, Le D, Rahman T S, and Nakajima Y 2021 J. Phys.: Condens. Matter 33 17LT01
[65] Zhang G, Shi X, Liu X, Xia W, Su H, Chen L, Wang X, Yu N, Zou Z, Zhao W et al. 2020 Chin. Phys. Lett. 37 087101
[66] Guechi A, Chegaar M, Bouhemadou A, and Arab F 2021 Solid State Commun. 323 114110
[67] Fässler T F and Kronseder C 1997 Angew. Chem. Int. Ed. 36 2683
[68] Yang Y C, Liu Z T, Liu J S, Liu Z H, Liu W L et al. 2021 Nucl. Sci. Tech. 32 31
[1]
. [J]. 中国物理快报, 2023, 40(4): 49901-.
[2]
. [J]. 中国物理快报, 2023, 40(4): 47301-.
[3]
. [J]. 中国物理快报, 2023, 40(3): 37402-.
[4]
. [J]. 中国物理快报, 2023, 40(3): 37102-.
[5]
. [J]. 中国物理快报, 2023, 40(1): 17401-.
[6]
. [J]. 中国物理快报, 2022, 39(5): 57302-057302.
[7]
. [J]. 中国物理快报, 2021, 38(12): 127402-.
[8]
. [J]. 中国物理快报, 2021, 38(10): 107402-.
[9]
. [J]. 中国物理快报, 2021, 38(10): 107101-.
[10]
. [J]. 中国物理快报, 2021, 38(9): 97401-097401.
[11]
. [J]. 中国物理快报, 2021, 38(7): 77401-.
[12]
. [J]. 中国物理快报, 2021, 38(5): 57404-.
[13]
. [J]. 中国物理快报, 2021, 38(2): 27401-.
[14]
. [J]. 中国物理快报, 2020, 37(8): 87402-.
[15]
. [J]. 中国物理快报, 2019, 36(8): 87401-.