Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi
D. S. Wu1,2 , Z. Y. Mi1,2 , Y. J. Li1,2 , W. Wu1,2 , P. L. Li1,2 , Y. T. Song1,2 , G. T. Liu1,2,3 , G. Li1,2,3** , J. L. Luo1,2,3**
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 1001902 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 1001903 Songshan Lake Materials Laboratory, Dongguan 523808
Abstract :We report single crystal growth of CoSi, which has recently been recognized as a new type of topological semimetal hosting fourfold and sixfold degenerate nodes. The Shubnikov–de Haas quantum oscillation (QO) is observed on our crystals. There are two frequencies originating from almost isotropic bulk electron Fermi surfaces, in accordance with band structure calculations. The effective mass, scattering rate, and QO phase difference of the two frequencies are extracted and discussed.
收稿日期: 2019-05-07
出版日期: 2019-06-20
:
71.20.Be
(Transition metals and alloys)
71.18.+y
(Fermi surface: calculations and measurements; effective mass, g factor)
72.15.-v
(Electronic conduction in metals and alloys)
引用本文:
. [J]. 中国物理快报, 2019, 36(7): 77102-.
D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, J. L. Luo. Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi. Chin. Phys. Lett., 2019, 36(7): 77102-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/36/7/077102
或
https://cpl.iphy.ac.cn/CN/Y2019/V36/I7/77102
[1] Sakai A, Ishii F, Onose Y, Tomioka Y, Yotsuhashi S, Adachi H, Nagaosa N and Tokura Y 2007 J. Phys. Soc. Jpn. 76 093601 [2] Longhin M, Rizza M, Viennois R and Papet P 2017 Intermetallics 88 46 [3] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037 [4] Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402 (and the supplementary material therein) [5] Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 206401 [6] Zhang T, Song Z, Alexandradinata A, Weng H, Fang C, Lu L and Fang Z 2018 Phys. Rev. Lett. 120 016401 [7] Takane D, Wang Z, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C, Kim T, Horiba K, Kumigashira H, Takahashi T, Ando Y and Sato T 2019 Phys. Rev. Lett. 122 076402 [8] Rao Z C, Li H, Zhang T T, Tian S J, Li C H and Fu B B 2019 Nature 567 496 [9] Sanchez D S, Belopolski I, Cochran T A, Xu X, Yin J X, Chang G and Xie W 2019 Nature 567 500 [10] Ishida K, Nishizawa T and Schlesinger M E 1991 J. Phase Equilib. 12 578 [11] Http://shelx.uni-goettingen.de [12] Stishov S M, Petrova A E, Sidorov V A and Menzel D 2012 Phys. Rev. B 86 064433 [13] Amamou A, Bach P, Gautier F, Robert C and Castaing J 1972 J. Phys. Chem. Solids 33 1697 [14] Narozhnyi V N and Krasnorussky V N 2013 J. Exp. Theor. Phys. 116 780 (and reference therein) [15] Burkov A T, Novikov S V, Zaitsev V K and Reith H 2017 Semiconductors 51 689 [16] Petrova A E, Krasnorussky V N, Shikov A A, Yuhasz W M, Lograsso T A, Lashley J C and Stishov S M 2010 Phys. Rev. B 82 155124 [17] Ohta H, Arioka T, Kulatov E, Mitsudo S and Motokawa M 1998 J. Magn. Magn. Mater. 177–181 1371 [18] Ou-Yang T Y, Shu G J and Fuh H R 2017 Europhys. Lett. 120 17002 [19] D van der Marel, Damascelli A, Schulte K and Menovsky A 1998 Physica B 244 138 [20] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 [21] Cvijović D 2011 Theor. Math. Phys. 166 37 [22] Xu X T and Jia S 2016 Chin. Phys. B 25 117204 [23] Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University) [24] Pshenay-Severin D A, Ivanov Y V, Burkov A A and Burkov A T 2018 J. Phys.: Condens. Matter 30 135501 [25] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 (and the supplementary materials therein) [26] Asanabe S, Shinoda D and Sasaki Y 1964 Phys. Rev. 134 A774 [27] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402 [28] Alexandradinata A, Wang C, Duan W and Glazman L 2018 Phys. Rev. X 8 011027 [29] Xu X, Wang X, Cochran T A, Sanchez D S, Belopolski I, Wang G, Liu Y, Tien H J, Gui X, Xie W, Hasan M Z, Chang T R and Jia S 2019 arXiv:1904.00630
[1]
. [J]. 中国物理快报, 2022, 39(5): 57102-.
[2]
. [J]. 中国物理快报, 2022, 39(2): 28202-.
[3]
. [J]. 中国物理快报, 2021, 38(1): 17101-.
[4]
. [J]. 中国物理快报, 2020, 37(1): 17104-017104.
[5]
. [J]. 中国物理快报, 2019, 36(7): 77101-.
[6]
. [J]. 中国物理快报, 2019, 36(6): 67101-.
[7]
. [J]. 中国物理快报, 2018, 35(9): 97102-.
[8]
. [J]. 中国物理快报, 2017, 34(10): 107101-.
[9]
. [J]. 中国物理快报, 2015, 32(01): 17101-017101.
[10]
. [J]. 中国物理快报, 2013, 30(12): 127101-127101.
[11]
. [J]. 中国物理快报, 2013, 30(11): 117101-117101.
[12]
. [J]. 中国物理快报, 2013, 30(7): 77102-077102.
[13]
LIU Yue-Lin, GAO An-Yuan, LU Wei, ZHOU Hong-Bo, ZHANG Ying. Optimal Electron Density Mechanism for Hydrogen on the Surface and at a Vacancy in Tungsten [J]. 中国物理快报, 2012, 29(7): 77101-077101.
[14]
LIU Yue-Lin;ZHOU Hong-Bo;JIN Shuo;ZHANG Ying;LU Guang-Hong
. Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation [J]. 中国物理快报, 2010, 27(12): 127101-127101.
[15]
SHI Li-Wei;DUAN Yi-Feng;YANG Xian-Qing;QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect [J]. 中国物理快报, 2010, 27(9): 96201-096201.