摘要We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The first-principles computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.
Abstract:We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The first-principles computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.
LIU Yue-Lin;ZHOU Hong-Bo;JIN Shuo;ZHANG Ying;LU Guang-Hong
. Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation[J]. 中国物理快报, 2010, 27(12): 127101-127101.
LIU Yue-Lin, ZHOU Hong-Bo, JIN Shuo, ZHANG Ying, LU Guang-Hong
. Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation. Chin. Phys. Lett., 2010, 27(12): 127101-127101.
[1] Condon J B and Schober T J 1993 J. Nucl. Mater. 207 1
[2] Liu Y L, Zhang Y, Luo G N and Lu G H 2009 J. Nucl. Mater. 390–391 1032
[3] Liu Y L, Zhang Y, Zhou H B, Liu F, Luo G N and Lu G H 2009 Phys. Rev. B 79 172103
[4] Causey R, Wilson K, Venhaus T and Wampler W R 1999 J. Nucl. Mater. 266–269 467
[5] Luo G N, Shu W M and Nishi M 2005 J. Nucl. Mater. 347 111
[6] Nagata S and Takahiro K 2000 J. Nucl. Mater. 283–287 1038
[7] Tokunaga K, Baldwin M J, Doerner R P, Noda N, Kubota Y, Yoshida N, Sogabe T, Kato T and Schedler B 2005 J. Nucl. Mater. 337–339 887
[8] Poon M, Haasz A A, Davis J W and Macaulay-Newcombe R G 2003 J. Nucl. Mater. 199–203 313
[9] Norskov J K, Besenbacher F, Bottiger J, Nielsen B B and Pisarev A A 1982 Phys. Rev. Lett. 49 1420
[10] Besenbacher F, Norskov J K, Puska M J and Holloway S 1985 Phys. Rev. Lett. 55 852
[11] Myers S M, Nordlander P, Besenbacher F and Norskov J K 1986 Phys. Rev. B 33 854
[12] Nordlander P, Norskov J K, Besenbacher F and Myers S M 1989 Phys. Rev. B 40 1990
[13] Morris Jr J W and Krenn C R 2000 Philos. Mag. A 80 2827
[14] Liu Y L, Zhou H B, Zhang Y, Jin S and Lu G H 2009 Nucl. Instrum. Methods Phys. Res. B 267 3282
[15] Luo W, Roundy D, Cohen M L and Morris Jr J W 2002 Phys. Rev . B 66 094110
[16] Roundy D, Krenn C R, Cohen M L and Morris Jr J W 1999 Phys. Rev. Lett. 82 2713
[17] Sandera P, Pokluda J, Wang L G and Sob M 1997 Mater. Sci. Eng . A 234–236 370
[18] Sob M, Wang L G and Vitek V 1997 Mater. Sci. Com . A 234–236 1075
[19] Sob M, Wang L G and Vitek V 1998 Philos. Mag . B 78 653
[20] Ogata S, Li J and Yip S 2002 Science 298 807
[21] Clatterbuck D M, Chrzan D C and Morris Jr J W 2003 Acta. Mater. 51 2271
[22] Liu Y L, Zhang Y, Hong R J and Lu G H 2009 Chin. Phys. B 18 1923
[23] Liu Y L, Zhang Y, Zhou H B, Lu G H and Kohyama M 2008 J. Phys.: Condens. Matter 20 335216
[24] Deyirmenjian V B, Heine V, Payne M C, Milman V, Lynden-Bell R M and Finnis M W 1995 Phys. Rev. B 52 15191
[25] Lu G H, Deng S H, Wang T M, Kohyama M and Yamamoto R 2004 Phys. Rev. B 69 134106
[26] Lu G H, Zhang Y, Deng S H, Wang T M, Kohyama M, Yamamoto, Liu F, Horikawa K and Kanno M 2006 Phys. Rev. B 73 224115
[27] Zhang Y, Lu G H, Deng S H, Wang T M, Xu H, Kohyama M and Yamamoto R 2007 Phys. Rev. B 75 174101
[28] Liu Y L, Zhou H B, Zhang Y, Jin S and Lu G H 2009 Nucl. Instrum. Methods Phys. Res. B 267 3193
[29] Kohyama M 1999 Philos. Mag. Lett. 79 659
[30] Kohyama M 2002 Phys. Rev . B 65 184107
[31] Zhang Y, Lu G H, Wang T, Deng S, Kohyama M and Yamamoto R 2006 Mater. Trans. 47 2678
[32] Zhang Y, Lu G H, Hu X L, Wang T, Kohyama M and Yamamoto R 2007 J. Phys.: Condens. Matter 19 456225
[33] Liu L H, Zhang Y, Lu G H, Deng S H and Wang T M 2008 Acta Phys. Sin. 57 4428 (in Chinese)
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[37] Blochl P E 1994 Phys. Rev. B 50 17953
[38] C Kittel 1996 Introduction to Solid State Physics 7th edn (New York: Wiley)
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[40] Nielsen O H and Martin R M 1987 Phys. Rev. B 32 3780
[41] Savin A, Nesper R, Wengert S and Fassler T F 1999 Chem. Int. Ed. Engl. 36 1808
[42] Kohout M and Savin A 1997 J. Comput. Chem. 18 1431
[43] Vajeeston P, Ravindran P, Vidya R, Kjekshus A and Fjellvag H 2005 Europhys. Lett. 72 569