Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method
Y. E. Huang1, F. Wu1, A. Wang1, Y. Chen1, L. Jiao1, M. Smidman1,2, and H. Q. Yuan1,2,3,4*
1Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China 2Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310058, China 3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China 4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract:A central research topic in condensed matter physics is the understanding of the evolution of various phases and phase transitions under different tuning parameters such as temperature, magnetic field and pressure. To explore the pressure-induced evolution of the magnetism and Fermi surface of the heavy fermion antiferromagnet YbPtBi, we performed tunnel diode oscillator based measurements under pressure at low temperatures in high magnetic fields. Our results reveal that the magnetic order strengthens and the Fermi surface shrinks as the pressure increases, which are consistent with typical observations for Yb-based heavy fermion compounds. In addition, an anomalous change in the quantum oscillation amplitudes is observed above 1.5 GPa, and determining the origin requires further study.
. [J]. 中国物理快报, 2022, 39(9): 97101-.
Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method. Chin. Phys. Lett., 2022, 39(9): 97101-.
Fisk Z, Canfield P C, Beyermann W P, Thompson J D, Hundley M F, Ott H R, Felder E, Maple M B, de Lopez L T M A, Visani P, and Seaman C L 1991 Phys. Rev. Lett.67 3310
[7]
Mun E D, Bud'ko S L, Martin C, Kim H, Tanatar M A, Park J H, Murphy T, Schmiedeshoff G M, Dilley N, Prozorov R, and Canfield P C 2013 Phys. Rev. B87 075120
[8]
Ueland B G, Kreyssig A, Mun E D, Lynn J W, Harriger L W, Pratt D K, Prokeš K, Hüsges Z, Toft-Petersen R, Sauerbrei S, Saunders S M, Furukawa Y, Bud'ko S L, McQueeney R J, Canfield P C, and Goldman A I 2019 Phys. Rev. B99 184431
[9]
Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F, and Yuan H Q 2018 Nat. Commun.9 4622
Lacerda A, Movshovich R, Hundley M F, Canfield P C, Arms D, Sparn G, Thompson J D, Fisk Z, Fisher R A, Phillips N E, and Ott H R 1993 J. Appl. Phys.73 5415
Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, and Salamon M B 2006 Phys. Rev. Lett.97 017006
[16]
Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, and Yuan H Q 2016 Phys. Rev. Lett.117 027001
[17]
Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, and Yuan H 2018 Proc. Natl. Acad. Sci. USA115 5343
Jiang W B, Yang L, Guo C Y, Hu Z, Lee J M, Smidman M, Wang Y F, Shang T, Cheng Z W, Gao F, Ishii H, Tsuei K D, Liao Y F, Lu X, Tjeng L H, Chen J M, and Yuan H Q 2015 Sci. Rep.5 17608
[30]
Salamatin D A, Sidorov V A, Chtchelkatchev N M, Magnitskaya M V, Martin N, Petrova A E, Fomicheva L N, Guo J, Huang C, Zhou Y, Sun L, and Tsvyashchenko A V 2021 Phys. Rev. B103 235139
[31]
Matsubayashi K, Hirayama T, Yamashita T, Ohara S, Kawamura N, Mizumaki M, Ishimatsu N, Watanabe S, Kitagawa K, and Uwatoko Y 2015 Phys. Rev. Lett.114 086401
[32]
Mun E, Bud'ko S L, Lee Y, Martin C, Tanatar M A, Prozorov R, and Canfield P C 2015 Phys. Rev. B92 085135
[33]
Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G, and Sebastian S E 2015 Science349 287