1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 5Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
Abstract:We investigate the uniaxial-pressure dependence of resistivity for URu$_{2-x}$Fe$_x$Si$_2$ samples with $x = 0$ and 0.2, which host a hidden order (HO) and a large-moment antiferromagnetic (LMAFM) phase, respectively. For both samples, the elastoresistivity $\zeta$ shows a seemingly divergent behavior above the transition temperature $T_0$ and a quick decrease below it. We find that the temperature dependence of $\zeta$ for both samples can be well described by assuming the uniaxial pressure effect on the gap or certain energy scale except for $\zeta_{(110)}$ of the $x = 0$ sample, which exhibits a nonzero residual value at 0 K. We show that this provides a qualitative difference between the HO and LMAFM phases. Our results suggest that there is an in-plane anisotropic response to the uniaxial pressure that only exists in the hidden order state without necessarily breaking the rotational lattice symmetry.
Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, and Mydosh J A 1987 Phys. Rev. Lett.58 1467
[8]
Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, and Matsuda Y 2011 Science331 439
[9]
Tonegawa S, Kasahara S, Fukuda T, Sugimoto K, Yasuda N, Tsuruhara Y, Watanabe D, Mizukami Y, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y, and Shibauchi T 2014 Nat. Commun.5 4188
[10]
Riggs S C, Shapiro M C, Maharaj A V, Raghu S, Bauer E D, Baumbach R E, Giraldo-Gallo P, Wartenbe M, and Fisher I R 2015 Nat. Commun.6 6425
Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. Lett.117 157002
[16]
Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y F, Luo H, and Li S 2017 Phys. Rev. Lett.119 157001
[17]
Tabata C, Inami T, Michimura S, Yokoyama M, Hidaka H, Yanagisawa T, and Amitsuka H 2014 Philos. Mag.94 3691
[18]
Kambe S, Tokunaga Y, Sakai H, Hattori T, Higa N, Matsuda T D, Haga Y, Walstedt R E, and Harima H 2018 Phys. Rev. B97 235142
[19]
Choi J, Ivashko O, Dennler N, Aoki D, von Arx K, Gerber S, Gutowski O, Fischer M H, Strempfer J, v Zimmermann M, and Chang J 2018 Phys. Rev. B98 241113
Kanchanavatee N, Janoschek M, Baumbach R E, Hamlin J J, Zocco D A, Huang K, and Maple M B 2011 Phys. Rev. B84 245122
[28]
Das P, Kanchanavatee N, Helton J S, Huang K, Baumbach R E, Bauer E D, White B D, Burnett V W, Maple M B, Lynn J W, and Janoschek M 2015 Phys. Rev. B91 085122
[29]
Hall J S, Movassagh M R, Wilson M N, Luke G M, Kanchanavatee N, Huang K, Janoschek M, Maple M B, and Timusk T 2015 Phys. Rev. B92 195111
Ran S, Wolowiec C T, Jeon I, Pouse N, Kanchanavatee N, White B D, Huang K, Martien D, DaPron T, Snow D, Williamsen M, Spagna S, Riseborough P S, and Maple M B 2016 Proc. Natl. Acad. Sci. USA113 13348
[32]
Frantzeskakis E, Dai J, Bareille C, Rödel T C, Güttler M, Ran S, Kanchanavatee N, Huang K, Pouse N, Wolowiec C T, Rienks E D L, Lejay P, Fortuna F, Maple M B, and Santander-Syro A F 2021 Proc. Natl. Acad. Sci. USA118 e2020750118
[33]
Williams T J, Barath H, Yamani Z, Rodriguez-Riviera J A, Le A J B, Garrett J D, Luke G M, Buyers W J L, and Broholm C 2017 Phys. Rev. B95 195171