Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies
Miao Xu1† , Changwei Zou1† , Benchao Gong2† , Ke Jia3,4 , Shusen Ye1 , Zhenqi Hao1 , Kai Liu2 , Youguo Shi3,4 , Zhong-Yi Lu2* , Peng Cai2* , and Yayu Wang1,5
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China2 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China4 Songshan Lake Materials Laboratory, Dongguan 523808, China5 Frontier Science Center for Quantum Information, Beijing 100084, China
Abstract :The electronic evolution of Mott insulators into exotic correlated phases remains puzzling, because of electron interaction and inhomogeneity. Introduction of individual imperfections in Mott insulators could help capture the main mechanism and serve as a basis to understand the evolution. Here we utilize scanning tunneling microscopy to probe the atomic scale electronic structure of the spin-orbit-coupling assisted Mott insulator Sr$_{3}$Ir$_{2}$O$_{7}$. It is found that the tunneling spectra exhibit a homogeneous Mott gap in defect-free regions, but near the oxygen vacancy in the rotated IrO$_{2}$ plane the local Mott gap size is significantly enhanced. We attribute the enhanced gap to the locally reduced hopping integral between the 5$d$ electrons of neighboring Ir sites via the bridging planar oxygen $p$ orbitals. Such bridging defects have a dramatic influence on local bandwidth, thus provide a new way to manipulate the strength of Mottness in a Mott insulator.
收稿日期: 2022-12-12
出版日期: 2023-02-28
:
71.27.+a
(Strongly correlated electron systems; heavy fermions)
71.70.Ej
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
68.37.Ef
(Scanning tunneling microscopy (including chemistry induced with STM))
引用本文:
. [J]. 中国物理快报, 2023, 40(3): 37101-.
Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies. Chin. Phys. Lett., 2023, 40(3): 37101-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/40/3/037101
或
https://cpl.iphy.ac.cn/CN/Y2023/V40/I3/37101
[1] Hubbard J 1963 Proc. R. Soc. A 276 238
[2] Hubbard J 1964 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 84 455
[3] Gebhard F 1997 Metal—Insulator Transitions: Models and Methods . Springer Tracts in Modern Physics vol 137 pp 1–48
[4] McWhan D B, Rice T M, and Remeika J P 1969 Phys. Rev. Lett. 23 1384
[5] Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H, and Davis J 2004 Nature 430 1001
[6] da Silva Neto E H, Aynajian P, Frano A et al. 2014 Science 343 393
[7] Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, and Wang Y 2016 Nat. Phys. 12 1047
[8] Shimura T, Inaguma Y, Nakamura T, Itoh M, and Morii Y 1995 Phys. Rev. B 52 9143
[9] Nakatsuji S and Maeno Y 2000 Phys. Rev. Lett. 84 2666
[10] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, and Johnston D C 1994 Phys. Rev. B 49 9198
[11] Dhital C, Khadka S, Yamani Z et al. 2012 Phys. Rev. B 86 100401
[12] Kim B J, Jin H, Moon S J et al. 2008 Phys. Rev. Lett. 101 076402
[13] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, and Arima T 2009 Science 323 1329
[14] Kim Y K, Krupin O, Denlinger J, Bostwick A, Rotenberg E, Zhao Q, Mitchell J, Allen J, and Kim B 2014 Science 345 187
[15] Kim J, Casa D, Upton M et al. 2012 Phys. Rev. Lett. 108 177003
[16] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502
[17] Ruan W, Hu C, Zhao J et al. 2016 Sci. Bull. 61 1826
[18] Weber C, Yee C, Haule K, and Kotliar G 2012 Europhys. Lett. 100 37001
[19] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[20] Roy S B 2019 Mott Insulators (Bristol: IOP Publishing)
[21] Okada Y, Walkup D, Lin H et al. 2013 Nat. Mater. 12 707
[22] Sun Z X, Guevara J M, Sykora S, Pärschke E M, Manna K, Maljuk A, Wurmehl S, van den Brink J, Büchner B, and Hess C 2021 Phys. Rev. Res. 3 023075
[23] Hu L L, Yang M, Wu Y Let al. 2019 Phys. Rev. B 99 094307
[24] Manna K, Aslan-Cansever G, Maljuk A, Wurmehl S, Seiro S, and Büchner B 2020 J. Cryst. Growth 540 125657
[25] Battisti I, Fedoseev V, Bastiaans K M, De La T A, Perry R S, Baumberger F, and Allan M P 2017 Phys. Rev. B 95 235141
[26] Ye C, Cai P, Yu R, Zhou X, Ruan W, Liu Q, Jin C, and Wang Y 2013 Nat. Commun. 4 1365
[27] Dai J X, Calleja E, Cao G, and McElroy K 2014 Phys. Rev. B 90 041102
[28] Battisti I, Bastiaans K M, Fedoseev V et al. 2017 Nat. Phys. 13 21
[29] Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z, Wilson S D, and Zeljkovic I 2019 Nat. Phys. 15 1267
[30] Wang Z, Walkup D, Maximenko Y, Zhou W, Hogan T, Wang Z, Wilson S D, and Madhavan V 2019 npj Quantum Mater. 4 43
[31] Kim B, Liu P, and Franchini C 2017 Phys. Rev. B 95 024406
[32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Park H J, Sohn C H, Jeong D, Cao G, Kim K, Moon S, Jin H, Cho D Y, and Noh T 2014 Phys. Rev. B 89 155115
[35] Wang Q, Cao Y, Waugh J, Park S, Qi T, Korneta O, Cao G, and Dessau D 2013 Phys. Rev. B 87 245109
[36] Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395
[37] Tokura Y and Nagaosa N 2000 Science 288 462
[38] Moretti Sala M, Rossi M, Al-Zein A et al. 2014 Phys. Rev. B 90 085126
[39] Moon S J, Jin H, Kim K W et al. 2008 Phys. Rev. Lett. 101 226402
[40] Zeb M A and Kee H Y 2012 Phys. Rev. B 86 085149
[41] Kim J, Said A, Casa D, Upton M, Gog T, Daghofer M, Jackeli G, Van Den Brink J, Khaliullin G, and Kim B 2012 Phys. Rev. Lett. 109 157402
[42] Fujiyama S, Ohashi K, Ohsumi H, Sugimoto K, Takayama T, Komesu T, Takata M, Arima T, and Takagi H 2012 Phys. Rev. B 86 174414
[43] King P D C, Takayama T, Tamai A et al. 2013 Phys. Rev. B 87 241106
[44] Nagai I, Yoshida Y, Ikeda S, Matsuhata H, Kito H, and Kosaka M 2007 J. Phys.: Condens. Matter 19 136214
[45] Han X J, Liu Y, Liu Z Y, Li X, Chen J, Liao H J, Xie Z Y, Normand B, and Xiang T 2016 New J. Phys. 18 103004
[46] Golor M, Reckling T, Classen L, Scherer M M, and Wessel S 2014 Phys. Rev. B 90 195131
[47] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[48] Weber C, Haule K, and Kotliar G 2010 Nat. Phys. 6 574
[49] Yee C H and Kotliar G 2014 Phys. Rev. B 89 094517
[50] Leshen J, Kavai M, Giannakis I, Kaneko Y, Tokura Y, Mukherjee S, Lee W C, and Aynajian P 2019 Commun. Phys. 2 36
[51] Gunkel F, Christensen D V, Chen Y Z, and Pryds N 2020 Appl. Phys. Lett. 116 120505
[52] Blöchl P E 1994 Phys. Rev. B 50 17953
[53] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[1]
. [J]. 中国物理快报, 2023, 40(2): 29901-.
[2]
. [J]. 中国物理快报, 2023, 40(1): 17102-.
[3]
. [J]. 中国物理快报, 2022, 39(12): 127302-.
[4]
. [J]. 中国物理快报, 2022, 39(11): 117101-.
[5]
. [J]. 中国物理快报, 2022, 39(10): 107101-.
[6]
. [J]. 中国物理快报, 2022, 39(9): 97101-.
[7]
. [J]. 中国物理快报, 2022, 39(9): 97102-.
[8]
. [J]. 中国物理快报, 2022, 39(5): 57101-.
[9]
. [J]. 中国物理快报, 2022, 39(2): 27401-.
[10]
. [J]. 中国物理快报, 2022, 39(1): 17402-.
[11]
. [J]. 中国物理快报, 2021, 38(12): 127401-.
[12]
. [J]. 中国物理快报, 2021, 38(12): 127101-.
[13]
. [J]. 中国物理快报, 2021, 38(7): 77103-.
[14]
. [J]. 中国物理快报, 2021, 38(5): 57501-.
[15]
. [J]. 中国物理快报, 2020, 37(10): 106102-.