Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure
Xu Chen1†, Xinhui Zhan2†, Xiaojun Wang2, Jun Deng1, Xiao-Bing Liu2*, Xin Chen2, Jian-Gang Guo1,3*, and Xiaolong Chen1,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract:We present the superconducting (SC) property and high-robustness of structural stability of kagome CsV$_{3}$Sb$_{5}$ under in situ high pressures. For the initial SC-I phase, its $T_{\rm c}$ is quickly enhanced from 3.5 K to 7.6 K and then totally suppressed at $P \sim 10$ GPa. With further increasing pressure, an SC-II phase emerges at $P \sim 15$ GPa and persists up to 100 GPa. The $T_{\rm c}$ rapidly increases to the maximal value of 5.2 K at $P=53.6$ GPa and slowly decreases to 4.7 K at $P=100$ GPa. A two-dome-like variation of $T_{\rm c}$ in CsV$_{3}$Sb$_{5}$ is concluded here. The Raman measurements demonstrate that weakening of $E_{\rm 2g}$ mode and strengthening of $E_{\rm 1g}$ mode occur without phase transition in the SC-II phase, which is supported by the results of phonon spectra calculations. Electronic structure calculations reveal that exertion of pressure may bridge the gap of topological surface nontrivial states near $E_{\rm F}$, i.e., disappearance of $Z_{2}$ invariant. Meanwhile, the Fermi surface enlarges significantly, consistent with the increased carrier density. The findings here suggest that the change of electronic structure and strengthened electron-phonon coupling should be responsible for the pressure-induced reentrant SC.
Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater.3 094407
Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett.125 247002
[19]
Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 arXiv:2103.03118 [cond-mat.supr-con]
[20]
Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Yin Q W, Gong C S, Tu Z J, Lei H C, Ma S, Zhang H, Ni S L, Tan H X, Shen C M, Dong X L, Yan B H, Wang Z Q, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con]
[21]
Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Hasan M Z 2020 arXiv:2012.15709 [cond-mat.supr-con]
[22]
Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con]
[23]
Liang Z W, Hou X Y, Ma W R, Zhang F, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con]
Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[28]
Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, McQueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con]
[29]
Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett.58 908
Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, and Hosono H 2008 Nature453 376
[33]
Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, and Zhao Z X 2012 Nature483 67
Chen K Y, Wang N N, Yin Q W, Tu Z J, Gong C S, Sun J P, Lei H C, Uwatoko Y, and Cheng J G 2021 arXiv:2102.09328 [cond-mat.supr-con]
[36]
Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H, and Yang Z R 2021 arXiv:2103.12507 [cond-mat.supr-con]
Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, and Cheng J G 2018 Nat. Commun.9 380
[48]
Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, and Cheng J G 2018 Phys. Rev. B97 020508(R)
[49]
Guo J, Chen X J, Dai J H, Zhang C, Guo J G, Chen X L, Wu Q, Gu D C, Gao P W, Yang L H, Yang K, Dai X, Mao H K, Sun L L, and Zhao Z X 2012 Phys. Rev. Lett.108 197001
[50]
Huang C, Guo J, Zhao K, Cui F, Qin S S, Mu Q G, Zhou Y Z, Cai S, Yang C L, Long S J, Yang K, Li A G, Wu Q, Ren Z A, Hu J P, and Sun L L 2021 Phys. Rev. Mater.5 L021801
[51]
Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, and Fisk Z 2008 Nat. Phys.4 603
[52]
Luo Y, Pourovskii L, Rowley S E, Li Y, Feng C, Georges A, Dai J, Cao G, Xu Z, Si Q, and Ong N P 2014 Nat. Mater.13 777
[53]
Amon A, Svanidze E, Cardoso-Gil R, Wilson M N, Rosner H, Bobnar M, Schnelle W, Lynn J W, Gumeniuk R, Hennig C, Luke G M, Borrmann H, Leithe-Jasper A, and Grin Y 2018 Phys. Rev. B97 014501
Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N P, Vishwanath A, and Cava R J 2015 Phys. Rev. B91 214517
[57]
Nayak J, Wu S C, Kumar N, Shekhar C, Singh S, Fink J, Rienks E E, Fecher G H, Parkin S S, Yan B H, and Felser C 2017 Nat. Commun.8 13942