NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$
Yi Cui1†, Cong Li1†, Qing Li2†, Xiyu Zhu2, Ze Hu1, Yi-feng Yang3, Jinshan Zhang4, Rong Yu1*, Hai-Hu Wen2*, and Weiqiang Yu1*
1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 2National Laboratory of Solid State Microstructures and Department of Physics, Center for Superconducting Physics and Materials, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China 3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
Abstract:Despite the recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ thin films, the absence of superconductivity and antiferromagnetism in their bulk materials remains a puzzle. Here we report the $^{1}$H NMR measurements on powdered Nd$_{0.85}$Sr$_{0.15}$NiO$_2$ samples by taking advantage of the enriched proton concentration after hydrogen annealing. We find a large full width at half maximum of the spectrum, which keeps increasing with decreasing the temperature $T$ and exhibits an upturn behavior at low temperatures. The spin-lattice relaxation rate $^{1}T_1^{-1}$ is strongly enhanced when lowering the temperature, developing a broad peak at about 40 K, then decreases following a spin-wave-like behavior $^{1}T_1^{-1}\propto T^2$ at lower temperatures. These results evidence a short-range glassy antiferromagnetic ordering of magnetic moments below 40 K and dominant antiferromagnetic fluctuations extending to much higher temperatures. Our findings reveal the strong electron correlations in bulk Nd$_{0.85}$Sr$_{0.15}$NiO$_2$, and shed light on the mechanism of superconductivity observed in films of nickelates.
Bocquet A E, Mizokawa T, Morikawa K, Fujimori A, Barman S R, Maiti K, Sarma D D, Tokura Y, and Onoda M 1996 Phys. Rev. B53 1161
[16]
Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, and Lee W S 2020 Nat. Mater.19 381
Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater.4 084409
Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett.37 097404
[31]
Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H, Jana R, Chen K Y, Sun J P, Wang B S, Yu X H, Liu G T, Uwatoko Y, Sui Y, Yang H X, Chen G F, and Cheng J G 2020 Chin. Phys. Lett.37 047102
Li B Z, Wang C, Yang P T, Sun J P, Liu Y B, Wu J, Ren Z, Cheng J G, Zhang G M, and Cao G H 2020 Phys. Rev. B101 195142
[35]
Kiefl R F, Brewer J H, Carolan J, Dosanjh P, Hardy W N, Kadono R, Kempton J R, Krahn R, Schleger P, Yang B X, Zhou H, Luke G M, Sternlieb B, Uemura Y J, Kossler W J, Yu X H, Ansaldo E J, Takagi H, Uchida S, and Seaman C L 1989 Phys. Rev. Lett.63 2136
[36]
Abragam A 1961 Principles of Nuclear Magnetism (Oxford: Oxford University Press)
Caviglia A D, Först M, Scherwitzl R, Khanna V, Bromberger H, Mankowsky R, Singla R, Chuang Y D, Lee W S, Krupin O, Schlotter W F, Turner J J, Dakovski G L, Minitti M P, Robinson J, Scagnoli V, Wilkins S B, Cavill S A, Gibert M, Gariglio S, Zubko P, Triscone J M, Hill J P, Dhesi S S, and Cavalleri A 2013 Phys. Rev. B88 220401(R)
Cui Y, Zhang G, Li H, Lin H, Zhu X, Wen H H, Wang G, Sun J, Ma M, Li Y, Gong D, Xie T, Gu Y, Li S, Luo H, Yu P, and Yu W 2018 Sci. Bull.63 11
[45]
Cui Y, Hu Z, Zhang J, Ma W, Ma M, Ma Z, Wang C, Yan J, Sun J, Cheng J, Jia S, Li Y, Wen J, Lei H, Yu P, Ji W, and Yu W 2019 Chin. Phys. Lett.36 077401
[46]
Wei X, Li H B, Zhang Q, Li D, Qin M, Xu L, Hu W, Huan Q, Yu L, Miao J, Yuan J, Zhu B, Kusmartseva A, Kusmartsev F V, Silhanek A V, Xiang T, Yu W, Lin Y, Gu L, Yu P, Chen Q, and Jin K 2020 Sci. Bull.65 1607
Lebed A G 2008 The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science (Berlin: Springer) vol 110
[50]
Rossi M, Lu H, Nag A, Li D, Osada M, Lee K, Wang B Y, Agrestini S, Garcia-Fernandez M, Chuang Y D, Shen Z X, Hwang H Y, Moritz B, Zhou K J, Devereaux T P, and Lee W S 2020 arXiv:2011.00595 [cond-mat.str-el]
Hewson A C 2009 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[53]
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett.29 037402