Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$
Mebrouka Boubeche1†, Jia Yu2†, Li Chushan2, Wang Huichao2, Lingyong Zeng1, Yiyi He1, Xiaopeng Wang1, Wanzhen Su1, Meng Wang2, Dao-Xin Yao2, Zhijun Wang3,4, and Huixia Luo1*
1School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, and Key Lab of Polymer Composite & Functional Materials, Sun Yat-Sen University, Guangzhou 510275, China 2School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 3Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:We report a systematic investigation on the evolution of the structural and physical properties, including the charge density wave (CDW) and superconductivity of the polycrystalline CuIr$_{2}$Te$_{4- x}$I$_{x}$ for $0.0 \le x \le 1.0$. X-ray diffraction results indicate that both of $a$ and $c$ lattice parameters increase linearly when $0.0 \le x \le 1.0$. The resistivity measurements indicate that the CDW is destabilized with slight $x$ but reappears at $x \ge 0.9$ with very high $T_{\rm CDW}$. Meanwhile, the superconducting transition temperature $T_{\rm c}$ enhances as $x$ increases and reaches a maximum value of around 2.95 K for the optimal composition CuIr$_{2}$Te$_{1.9}$I$_{0.1}$ followed by a slight decrease with higher iodine doping content. The specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the optimal composition CuIr$_{2}$Te$_{3.9}$I$_{0.1}$ is approximately 1.46, which is close to the Bardeen–Cooper–Schrieffer value of 1.43, indicating that it is a bulk superconductor. The results of thermodynamic heat capacity measurements under different magnetic fields [$C_{\rm p}(T, H)$], magnetization $M(T, H)$ and magneto-transport $\rho (T, H)$ measurements further suggest that CuIr$_{2}$Te$_{4- x}$I$_{x}$ bulks are type-II superconductors. Finally, an electronic phase diagram for this CuIr$_{2}$Te$_{4- x}$I$_{x}$ system has been constructed. The present study provides a suitable material platform for further investigation of the interplay of the CDW and superconductivity.
Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B78 104520
[11]
Luo H X, Klimczuk T, Müchler L, Schoop L, Hirai D, Fuccillo M K, Felser C and Cava R J 2013 Phys. Rev. B87 214510
[12]
Luo H X, Xie W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y and Cava R J 2016 Chem. Mater.28 1927
[13]
Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Fei Y, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun.6 7805
Fu Y, Liu E, Yuan H, Tang P, Lian B, Xu G, Zeng J, Chen Z, Wang Y, Zhou W, Xu K, Gao A, Pan C, Wang M, Wang B, Zhang S C, Cui Y, Hwang H Y and Miao F 2017 npj Quantum Mater.2 52
Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater.7 960
[20]
Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun.7 12146
da S N E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le T M and Yazdani A 2014 Science343 393
[23]
Talantsev I K, Ohmura T, M, Crump W P, Strickland N M, Wimbush S C and Ikuta H 2019 Sci. Rep.9 14245
Takubo K, Yamamoto K, Hirata Y, Wadati H, Mizokawa T, Sutarto R, He F, Ishii K, Yamasaki Y, Nakao H, Murakami Y, Matsuo G, Ishii H, Kobayashi M, Kudo K and Nohara M 2018 Phys. Rev. B97 205142
[30]
Yan D, Zeng Y J, Wang G H, Liu Y Y, Yin J J, Chang T R, Lin H, Wang M, Ma J, Jia S, Yao D X and Luo H X 2019 arXiv:1908.05438 [cond-mat.supr-con]
[31]
Yan D, Zeng L Y, Lin Y S, Yin J J, He Y, Zhang X, Huang M L, Shen B, Wang M, Wang Y H, Yao D X and Luo H X 2019 Phys. Rev. B100 174504
[32]
Yan D, Zeng Y, Zeng L Y, Yin J, He Y, Boubeche M, Wang M, Wang Y, Yao D X and Luo H X 2020 arXiv:2003.11463 [cond-mat.supr-con]
Li L, Deng X, Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y, Warren J B, Bozin E S, Billinge S J L, Sun Y, Zhu Y, Kotliar G and Petrovic C 2017 npj Quantum Mater.2 11