Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$
Liu Yang1, Ya-Ping Li1, Hao-Dong Liu1, Na Jiao1, Mei-Yan Ni1, Hong-Yan Lu1*, Ping Zhang1,2*, and C. S. Ting3
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 3Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204, USA
Abstract:Using first-principles calculations, we predict a new type of two-dimensional (2D) boride $M$B$_{3}$ ($M$ = Be, Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. The band structures show that the three $M$B$_{3}$ compounds are metallic, thus the possible phonon-mediated superconductivity is explored. Based on the Eliashberg equation, for BeB$_{3}$, CaB$_{3}$, and SrB$_{3}$, the calculated electron–phonon coupling constants $\lambda $ are 0.46, 1.09, and 1.33, and the corresponding superconducting transition temperatures $T_{\rm c}$ are 3.2, 22.4, and 20.9 K, respectively. To explore superconductivity with higher transition temperature, hydrogenation and charge doping are further considered. The hydrogenated CaB$_{3}$, i.e., HCaB$_{3}$, is stable, with the enhanced $\lambda $ of 1.39 and a higher $T_{\rm c}$ of 39.3 K. Moreover, with further hole doping at the concentration of $5.8\times 10^{11}$ hole/cm$^{2}$, the $T_{\rm c}$ of HCaB$_{3}$ can be further increased to 44.2 K, exceeding the McMillan limit. The predicted $M$B$_{3}$ and HCaB$_{3}$ provide new platforms for investigating 2D superconductivity in boron kagome lattice since superconductivity based on monolayer boron kagome lattice has not been studied before.
. [J]. 中国物理快报, 2023, 40(1): 17402-.
Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$. Chin. Phys. Lett., 2023, 40(1): 17402-.
Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature555 638
[8]
Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R, and Valenti R 2014 Nat. Commun.5 4261
[9]
Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwei S T B, and Felser C 2018 Nat. Phys.14 1125
Mielke C, I I I, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z, and Guguchia Z 2021 Phys. Rev. Mater.5 034803
[26]
Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater.3 094407
Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S T S, Chang G Q, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater.20 1353
Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 Phys. Rev. X11 031026
[32]
Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Lei H C, Zhang S T S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D, and Hasan M Z 2021 Phys. Rev. B104 035131
[33]
Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda A A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett.125 247002
Feng B J, Fu B T, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y, and Matsuda I 2017 Nat. Commun.8 1007
Zhang S H, Kang M, Huang H Q, Jiang W, Ni X J, Kang L, Zhang S P, Xu H X, Liu Z, and Liu F 2019 Phys. Rev. B99 100404(R)
[54]
Kang M G, Ye L, Fang S, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwic A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Brink J V D, Richter M, Ghimire M P, Checkelsky J G, and Comin R 2020 Nat. Mater.19 163
[55]
Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett.127 266401
[56]
Sales B C, Meier W R, May A F, Xing J, Yan J Q, Gao S, Liu Y H, Stone M B, Christianson A D, Zhang Q, and McGuire M A 2021 Phys. Rev. Mater.5 044202