A Power Interruption Technique for Investigation of Temperature Difference in Stabilized Low Direct-Current Arc Burning in Pure Argon on Atmospheric Pressure
M. M. Kuzmanovic1, J. J. Savovic2, D. P. Rankovic1, M. Stoiljkovic2, A. Antic Jovanovic1, M.S. Pavlovic2, M. Marinkovic2
1Faculty for Physical Chemistry, University of Belgrade, PO Box 137, 11001 Belgrade, Serbia2Laboratory of Physical Chemistry, Institute Vinca, PO Box 522, 11000 Belgrade, Serbia
A Power Interruption Technique for Investigation of Temperature Difference in Stabilized Low Direct-Current Arc Burning in Pure Argon on Atmospheric Pressure
M. M. Kuzmanovic1;J. J. Savovic2;D. P. Rankovic1;M. Stoiljkovic2;A. Antic Jovanovic1;M.S. Pavlovic2;M. Marinkovic2
1Faculty for Physical Chemistry, University of Belgrade, PO Box 137, 11001 Belgrade, Serbia2Laboratory of Physical Chemistry, Institute Vinca, PO Box 522, 11000 Belgrade, Serbia
摘要Plasma of argon stabilized arc column, in a current range 3--11A, is investigated using emission spectrometric diagnostic techniques. Temperatures are evaluated using several methods: argon line to adjacent recombinational continuum intensity ratio, absolute emissivity of argon line, measurement of electron number density, and power interruption. Electron number density is evaluated from absolute emissivity of recombinational continuum. The difference between electron Te and heavy particle Th temperature ranged from 4500K for 3A to 2300K for 11A arc current. By comparing the present with the previously obtained results, using the same arc device but with the introduction of water aerosol, it is concluded that water aerosol reduces the difference Te-Th and brings plasma closer to the partial thermodynamic equilibrium state.
Abstract:Plasma of argon stabilized arc column, in a current range 3--11A, is investigated using emission spectrometric diagnostic techniques. Temperatures are evaluated using several methods: argon line to adjacent recombinational continuum intensity ratio, absolute emissivity of argon line, measurement of electron number density, and power interruption. Electron number density is evaluated from absolute emissivity of recombinational continuum. The difference between electron Te and heavy particle Th temperature ranged from 4500K for 3A to 2300K for 11A arc current. By comparing the present with the previously obtained results, using the same arc device but with the introduction of water aerosol, it is concluded that water aerosol reduces the difference Te-Th and brings plasma closer to the partial thermodynamic equilibrium state.
(Plasma diagnostic techniques and instrumentation)
引用本文:
M. M. Kuzmanovic;J. J. Savovic;D. P. Rankovic;M. Stoiljkovic;A. Antic Jovanovic;M.S. Pavlovic;M. Marinkovic. A Power Interruption Technique for Investigation of Temperature Difference in Stabilized Low Direct-Current Arc Burning in Pure Argon on Atmospheric Pressure[J]. 中国物理快报, 2008, 25(4): 1376-1379.
M. M. Kuzmanovic, J. J. Savovic, D. P. Rankovic, M. Stoiljkovic, A. Antic Jovanovic, M.S. Pavlovic, M. Marinkovic. A Power Interruption Technique for Investigation of Temperature Difference in Stabilized Low Direct-Current Arc Burning in Pure Argon on Atmospheric Pressure. Chin. Phys. Lett., 2008, 25(4): 1376-1379.
[1] Gleizes A, Kafrouni H, Dang Duc H and Maury C 1982 J.Phys. D: Appl. Phys. 15 1031 [2] Nick K P, Richter J and Helbig V 1984 J. Quant.Spectrosc. Radiat. Transfer 32 1 [3] Bouaziz M, Gleizes A and Razafinimanana M 1998 J.Appl. Phys. 84 4128 [4] Kuhn G and Kock M 2006 J. Phys. D: Appl. Phys. 39 2401 [5] Benilov M S 1999 IEEE Trans. Plasma Science 271458 [6] Marinkovic M, Antonijevic V 1980 Spectrochim.Acta 35B 129 [7] Tripkovic M, Holclajtner-Antunovic I,Marinkovic M, Markovic D 2001 J. Serb. Chem. Soc. 66 249 [8] Kuzmanovic M, Antic-Jovanovic A,Stoiljkovic M, Pavlovic M, Marinkovic M 2003 Spectrosc. Lett. 36 303 [9] Kuzmanovic M, Pavlovic M S, Savovic J J,Marinkovic M 2003 Spectrochim. Acta B 58 239 [10] Gurevich D B and Podmoshenskii I V 1963 Opt.Spectrosc. 15 319 [11] Fey F H A G, Stoffels W W, van der Mullen J A M, van derSijde B and Schram D C 1991 Spectrochim. Acta B 46 885 [12] De Regt J M, van der Mullen J A M and Schram D C 1995 Phys. Rev. E 52 2982. [13] Bastiaans G J, Mangold R A 1985 Spectrochim. Acta B 40 885 [14] Blades M W, Caughlin B L, Walker Z H and Burton L L 1987 Prog. Anal. Spectrosc. 10 57 [15] Ralchenko Yu, Jou F C, Kelleher D E, Kramida A E,Musgrove, A, Reader J, Wiese W L and Olsen K 2007 NIST AtomicSpectra Database (version 3.1.3) (http://physics.nist.gov/asd3)(Gaithersburg, MD: National Institute of Standards and Technology) [16] Grotti M, Lagomarsino C and Mermet J M 2006 J. Anal.At. Spectrom. 21 963