摘要By using optical emission spectroscopy (OES), N2 and N2+ vibrational temperatures in capacitively coupled plasma discharges with different exciting frequencies are investigated. The vibrational temperatures are acquired by comparing the measured and calculated spectra of selected transitions with a least-square procedure. It is found that N2 and N2+ vibrational temperatures almost increase linearly with increasing exciting frequency up to 23MHz, then increase slowly or even decrease. The pressure corresponding to the maximum point of N2 vibrational temperature decreases with the increasing exciting frequency. These experimental phenomena are attributed to the increasing electron density, whereas the electron temperature decreases with exciting frequency rising.
Abstract:By using optical emission spectroscopy (OES), N2 and N2+ vibrational temperatures in capacitively coupled plasma discharges with different exciting frequencies are investigated. The vibrational temperatures are acquired by comparing the measured and calculated spectra of selected transitions with a least-square procedure. It is found that N2 and N2+ vibrational temperatures almost increase linearly with increasing exciting frequency up to 23MHz, then increase slowly or even decrease. The pressure corresponding to the maximum point of N2 vibrational temperature decreases with the increasing exciting frequency. These experimental phenomena are attributed to the increasing electron density, whereas the electron temperature decreases with exciting frequency rising.
HUANG Xiao-Jiang;XIN Yu;ZHANG Jie;NING Zhao-Yuan. The influence of Exciting Frequency on N2 and N2+ Vibrational Temperature of Nitrogen Capacitively Coupled Plasma[J]. 中国物理快报, 2009, 26(5): 55202-055202.
HUANG Xiao-Jiang, XIN Yu, ZHANG Jie, NING Zhao-Yuan. The influence of Exciting Frequency on N2 and N2+ Vibrational Temperature of Nitrogen Capacitively Coupled Plasma. Chin. Phys. Lett., 2009, 26(5): 55202-055202.
[1] Lieberman M A and Lichtenberg A J 2005 Principles ofPlasma Discharges and Materials Processing (New York: Wiley) p 14 [2] Lee C, Hiromitsu K, Masaaki H and Akira K 2005 Solid State Technol. 11 39 [3] Lee J K, Manuilenko O V, Babaeva N Y, Kim H C and Shon J W2005 Plasma Sources Sci. Technol. 14 89 [4] Kim H C, Lee J K and Shon J W 2003 Phys. Plasmas 10 4545 [5] Jiang W, Xu X, Dai Z L and Wang Y N 2008 Phys.Plasmas 15 033502 [6] Li X S, Bi Z H, Chang D L, Li Z C, Wang S, Xu X, Xu Y, LuW Q, Zhu A M and Wang Y N 2008 Appl. Phys. Lett. 93031504 [7] Yuan Q H, Ye C, Xin Y, Huang X J, Ning Z Y and Yin G Q2008 Appl. Phys. Lett. 93 071503 [8] Xu Y J, Ye C, Huang X J, Yuan J, Xing Z Y and Ning Z Y2008 Chin. Phys. Lett. 25 2942 [9] Shota N, Michio K and Hiroshi A 2006 Plasma SourcesSci. Technol. 15 783 [10] Bai B, Sawin H H and Cruden B A 2006 J. Appl. Phys. 99 013308 [11] Tuszewski M 2006 J. Appl. Phys. 100 053301 [12] Cruden B A, Rao M V V S, Sharma S P and Meyyappan M 2002 J. Appl. Phys. 91 8955 [13] Donnelly V M and Malyshev M V 2000 Appl. Phys.Lett. 77 2467 [14] Hash D B, Bose D, Rao M V V S, Cruden B A, Meyyappan Mand Sharma S P 2001 J. Appl. Phys. 90 2148 [15] Huang X J, Xin Y, Yuan Q H and Ning Z Y 2008 Phys.Plasmas 15 073501 [16] Koike S, Sakamoto T, Kobori H, Matsuura H and Akatsuka H2004 Jpn. J. Appl. Phys. 43 5550 [17] Biloiu C, Sun X, Harvey Z and Scime E 2006 Rev. Sci.Instrm. 77 10F117 [18] Nassar H, Pellerin S, Musiol K, Martinie O, Pellerin Nand Cormier J M, 2004 J. Phys. D: Appl. Phys. 37 1904 [19] Rehman N U, Khan F U, Khattak N A D and Zakaullah M 2008 Phys. Lett. A 372, 1462 [20] Sakamoto T, Matsuura H and Akatsuka H 2007 J. Appl.Phys. 101 023307 [21] Huang X J , Xin Y, Yang L , Yuan Q H and Ning Z Y 2008 Phys. Plasmas 15 113504 [22] Mi L, Xu P and Wang P N 2005 J. Phys.D: Appl. Phys. 38 3885 [23] Kang Z D and Pu Y K 2002 Chin. Phys. Lett. 19211 [24] Zhu X M, Chen W C, Zhang S, Guo Z G, Hu D W and Pu Y K2007 J. Phys. D: Appl. Phys. 40 7019 [25] Abdel-Fattah E and Sugai H 2003 Appl. Phys. Lett. 83 1533