Growth Model for Pulsed-Laser Deposited Perovskite Oxide Films
WANG Xu1, FEI Yi-Yan2, ZHU Xiang-Dong1,2, LU Hui-Bin1, YANG Guo-Zhen1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1000802Department of Physics, University of California at Davis, Davis, California 95616, USA
Growth Model for Pulsed-Laser Deposited Perovskite Oxide Films
WANG Xu1;FEI Yi-Yan2;ZHU Xiang-Dong1,2;LU Hui-Bin1;YANG Guo-Zhen1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1000802Department of Physics, University of California at Davis, Davis, California 95616, USA
摘要We present a multi-level growth model that yields some of the key features of perovskite oxide film growth as observed in the reflection high energy electron diffraction (RHEED) and ellipsometry studies. The model describes the effect of deposition, temperature, intra-layer transport, interlayer transport and Ostwald ripening on the morphology of a growth surface in terms of the distribution of terraces and step edges during and after deposition. The numerical results of the model coincide well with the experimental observation.
Abstract:We present a multi-level growth model that yields some of the key features of perovskite oxide film growth as observed in the reflection high energy electron diffraction (RHEED) and ellipsometry studies. The model describes the effect of deposition, temperature, intra-layer transport, interlayer transport and Ostwald ripening on the morphology of a growth surface in terms of the distribution of terraces and step edges during and after deposition. The numerical results of the model coincide well with the experimental observation.
[1] Zinke-Allmang M, Feldman L C and Grabow M H 1992 Surf. Sci. Rep. 16 377 [2] Tersoff J, Denier van der Gon AW and Tromp R M 1994 Phys. Rev. Lett. 72 266 [3] Ostwald W 1900 Z. Phys. Chem. (Leipzig) 43 495 [4] Clarke S and Vvedensky D D 1987 Phys. Rev. Lett. 58 2235 [5] Schneider M, Rahman A and Schuller I K 1985 Phys.Rev. Lett. 55 604 [6]{\v{Smilauer P and Vvedensky D D 1993 Phys. Rev. B 48 17603 [7] Cohen P I, Petrich G S, Pukite P R, Whaley G J and ArrottA S 1989 Surf. Sci. 216 222 [8] van der Vegt H A, van Pinxteren H M, Lohmeier M and VliegE 1992 Phys. Rev. Lett. 68 3335 [9] Neave J H, Joyce B A, Dobson P J and Norton N 1983 Appl. Phys. A 31 1 [10] Sakamoto T, Kawai N J, Nakagawa T, Ohta K, Kojima T andHashiguchi G 1986 Surf. Sci. 174 651 [11] Koster G, Kropman B L, Rijnders G J H M, Blank D H A andRogalla H 1998 Appl. Phys. Lett. 73 2920 [12] Vlieg E, Denier van der Gon A W, van der Veen J F,Macdonald J E and Norris C 1988 Phys. Rev. Lett. 61 2241 [13] Eres G, Tischler J Z, Yoon M, Larson B C, Rouleau C M,Lowndes D H and Zschack P 2002 Appl. Phys. Lett. 80 3379 [14] Poelsema B and Comsa G 1989 Scattering of ThermalEnergy Atoms from Disordered Surfaces (Berlin: Springer) [15] J{\"{Onsson J, Deppert K, Jeppesen S, Paulsson G,Samuelson L and Schmidt P 1990 Appl. Phys. Lett. 56 2414 [16] Reinhardt F, Richter W, M{\"{uller A B, Gutsche D,Kurpas P, Ploska K, Rose K C and Zorn M 1993 J. Vac. Sci.Technol. B 11 1427 [17] Kobayashi N and Horikoshi Y 1990 Jpn. J. Appl.Phys. 29 L702 [18] Fei Y Y, Zhu X D, Liu L F, Lu H B, Chen Z H and Yang G Z2004 Phys. Rev. B 69 233405 [19] Zhu X D 2004 Phys. Rev. B 69 115407 [20] Zhu X D, Fei Y Y, Wang X, Lu H B and Yang G Z 2007 Phys. Rev. B 75 245434