Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)
Xin-Zhu Yin1, Hao Wang1, Qiu-Hao Wang1, Na Jiao1*, Mei-Yan Ni1, Meng-Meng Zheng1, Hong-Yan Lu1*, and Ping Zhang1,2*
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract:The superconductivity of two-dimensional (2D) materials has extremely important research significance. To date, superconducting transition temperatures ($T_{\rm c}$) of 2D superconductors are still far from practical applications. Previously, 2D MXene Mo$_2$N has been successfully synthesized [Urbankowski et al.Nanoscale9 17722, (2017)]. We systematically investigate the effects of carbonization and further hydrogenation on the stability, electronic property and superconductivity of 1T- and 2H-$M_{2}$N ($M$ = Mo, W) based on first-principles calculations. The results show that the 1T-$M_{2}$N and 2H-$M_{2}$N ($M$ = Mo, W) are all dynamically and thermodynamically stable after carbonization and further hydrogenation. After carbonization, $T_{\rm c}$'s of 1T-$M_{2}$NC$_{2}$ ($M$ = Mo, W) are all increased, while $T_{\rm c}$'s of 2H-$M_{2}$NC$_{2}$ ($M$ = Mo, W) are all decreased. By further hydrogenation, the $T_{\rm c}$'s of 1T- and 2H-$M_{2}$NC$_{2}$H$_{2}$ are all increased. Among all of these structures, $T_{\rm c}$ of 1T-Mo$_2$NC$_2$H$_2$ is the highest one, reaching 42.7 K, and the corresponding electron-phonon coupling strength $\lambda$ is 2.27. Therefore, hydrogenation is an effective method to modulate $T_{\rm c}$'s of 2D $M_{2}$NC$_{2}$ ($M$ = Mo, W) materials.
Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P, Straßer C, Stöhr A, Forti S, Ast C R, Starke U, and Damascelli A 2015 Proc. Natl. Acad. Sci. USA112 11795
[2]
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature556 43
[3]
Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, and Jia J F 2015 Nat. Mater.14 285
[4]
Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, and Mak K F 2016 Nat. Phys.12 139
Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol.12 744
[17]
Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X, and Xu J 2021 ACS Nano15 20319
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter21 395502