1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The intercalated iron selenide (Li,Fe)OHFeSe has a strongly layered structure analogous to the quasi-two-dimensional (2D) bismuth cuprate superconductors, and exhibits both high-temperature ($T_{\rm c}$) and topological superconductivity. However, the issue of its superconductivity dimensionality has not yet been fully investigated so far. Here we report that the quasi-2D superconductivity features, including the high anisotropy $\gamma = 151$ and the associated quasi-2D vortices, are also revealed for (Li,Fe)OHFeSe, based on systematic experiments of the electrical transport and magnetization and model fittings. Thus, we establish a new vortex phase diagram for (Li,Fe)OHFeSe, which delineates an emergent quasi-2D vortex-liquid state, and a subsequent vortex-solid dimensional crossover from a pancake-like to a three-dimensional state with decreasing temperature and magnetic field. Furthermore, we find that all the quasi-2D characteristics revealed here for the high-$T_{\rm c}$ iron selenide superconductor are very similar to those reported for high-$T_{\rm c}$ bismuth cuprate superconductors.
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett.29 037402
[7]
Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, and Ma X C 2014 Chin. Phys. Lett.31 017401
[8]
Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, and Wang Y 2015 Sci. Bull.60 1301
[9]
Kozuka Y, Kim M, Bell C, Kim B G, Hikita Y, and Hwang H Y 2009 Nature462 487
[10]
Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X, and Jiang M 2014 Nat. Commun.5 5708
Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, and Liu Z 2018 Nature556 355
[13]
Faeth B D, Yang S L, Kawasaki J K, Nelson J N, Mishra P, Parzyck C T, Li C, Schlom D G, and Shen K M 2021 Phys. Rev. X11 021054
[14]
Xu Y, Rong H, Wang Q, Wu D, Hu Y, Cai Y, Gao Q, Yan H, Li C, Yin C, Chen H, Huang J, Zhu Z, Huang Y, Liu G, Xu Z, Zhao L, and Zhou X J 2021 Nat. Commun.12 2840
[15]
Xing Y, Zhang H M, Fu H L, Liu H W, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J, and Xie X C 2015 Science350 542
Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang J, and Li Y R 2019 Science366 1505
[18]
Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, and Liu G 2019 Nat. Commun.10 2044
[19]
Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, and Zhang Y 2019 Nature575 156
[20]
Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, and Xie Y W 2021 Science372 721
[21]
Nakagawa Y, Kasahara Y, Nomoto T, Arita R, Nojima T, and Iwasa Y 2021 Science372 190
Liu Q, Chen C, Zhang T, Peng R, Yan Y J, H P W C, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X8 041056
Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L, and Zhou X J 2020 Phys. Rev. B101 224508
[26]
Lee S L, Zimmermann P, Keller H, Warden M, Savic I M, Schauwecker R, Zech D, Cubitt R, Forgan E M, Kes P H, Li T W, Menovsky A A, and Tarnawski Z 1993 Phys. Rev. Lett.71 3862
[27]
Bernhard C, Wenger C, Niedermayer C, Pooke D M, Tallon J L, Kotaka Y, Shimoyama J, Kishio K, Noakes D R, Stronach C E, Sembiring T, and Ansaldo E J 1995 Phys. Rev. B52 R7050
Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, and Chen X H 2015 Nat. Mater.14 325
[33]
Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, and Zhao Z 2015 Phys. Rev. B92 064515
[34]
Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, and Feng D L 2015 Phys. Rev. B92 060504
[35]
Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, and Zhou X J 2016 Nat. Commun.7 10608
Li D, Shen P, Tian J, He G, Ni S, Wang Z, Xi C, Pi L, Zhang H, Yuan J, Jin K, Talantsev E F, Yu L, Zhou F, Hänisch J, Dong X, and Zhao Z 2022 Supercond. Sci. Technol.35 064007
[42]
Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O, and Vasiliev A 2013 CrystEngComm15 1989
Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, and Mannhart J 2007 Science317 1196
Li D, Yuan J, Shen P, Xi C, Tian J, Ni S, Zhang J, Wei Z, Hu W, Li Z, Yu L, Miao J, Zhou F, Pi L, Jin K, Dong X, and Zhao Z 2019 Supercond. Sci. Technol.32 12LT01