Majorana Corner Modes and Flat-Band Majorana Edge Modes in Superconductor/Topological-Insulator/Superconductor Junctions
Xiao-Ting Chen1†, Chun-Hui Liu2,3†, Dong-Hui Xu4,5*, and Chui-Zhen Chen1*
1Institute for Advanced Study and School of Physical Science and Technology, Soochow University, Suzhou 215006, China 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4Department of Physics, Chongqing University, Chongqing 400044, China 5Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China
Abstract:Recently, superconductors with higher-order topology have stimulated extensive attention and research interest. Higher-order topological superconductors exhibit unconventional bulk-boundary correspondence, thus allow exotic lower-dimensional boundary modes, such as Majorana corner and hinge modes. However, higher-order topological superconductivity has yet to be found in naturally occurring materials. We investigate higher-order topology in a two-dimensional Josephson junction comprised of two s-wave superconductors separated by a topological insulator thin film. We find that zero-energy Majorana corner modes, a boundary fingerprint of higher-order topological superconductivity, can be achieved by applying magnetic field. When an in-plane Zeeman field is applied to the system, two corner modes appear in the superconducting junction. Furthermore, we also discover a two-dimensional nodal superconducting phase which supports flat-band Majorana edge modes connecting the bulk nodes. Importantly, we demonstrate that zero-energy Majorana corner modes are stable when increasing the thickness of topological insulator thin film.
Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, and Alicea J 2016 Phys. Rev. X6 031016
Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science360 182
[21]
Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, and Ding H 2019 Nat. Phys.15 1181
[22]
Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, and Gao H J 2018 Science362 333
[23]
Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X8 041056
[24]
Zhu S Y, Kong L Y, Cao L, Chen H, Papaj M, Du S, Xing Y Q, Liu W Y, Wang D F, Shen C M et al.2020 Science367 189
[25]
Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, and Freedman M H 2017 Phys. Rev. B95 235305
Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett.116 257003
Zhang X, Lyu Z, Yang G, Li B, Hou Y L, Le T, Wang X, Wang A, Sun X, Zhuo E, Liu G, Shen J, Qu F, and Lu L 2022 Chin. Phys. Lett.39 017401
[105]
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, and Xue Q K 2010 Nat. Phys.6 712