Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors
Yi-Na Huang1*, Zhao-Feng Ye1, Da-Yong Liu2, and Hang-Qiang Qiu1
1Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China 2Department of Physics, School of Sciences, Nantong University, Nantong 226019, China
Abstract:We focus on the effect of ionic radius of lanthanides and the number of electrons in $4f$ orbitals on the superconducting temperature in 12442-type iron-based superconductors Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ (Ln = Sm and Ho). Electronic properties of RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ and RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ with the largest differences of ionic radii and numbers of electrons in $4f$ orbital, and the largest difference of superconducting temperatures by using first-principles calculations. We predict that the ground state of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ is spin-density-wave-type in-plane striped antiferromagnet, and the magnetic moment around each Fe atom is about $2\mu_{\scriptscriptstyle{\rm B}}$. RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ has a great influence on the energy band near the $\varGamma$ point, and a Dirac-like dispersion energy band appears. This band is mainly contributed by the $d_{z^2}$ orbital of Fe, which proves that RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ has a stronger three-dimensionality. At the same time, this extra Fermi surface appears at the $\varGamma$ point, which also shows that Sm can effectively enhance the coupling strength within Fe$_{2}$As$_{2}$ bilayers. This is also confirmed by the charge density difference $\rho$(RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$)$\,-\rho$(RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$). It increases the internal coupling strength of the bilayer Fe$_{2}$As$_{2}$ layers, which in turn leads to a higher $T_{\rm c}$ of RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ than RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$. Determining the details of their electronic structure, which may be closely related to superconductivity, is crucial to understanding the underlying mechanism. Such microscopic studies provide useful clues for our further research of other high-temperature superconductors.
(Magnetic properties including vortex structures and related phenomena)
引用本文:
. [J]. 中国物理快报, 2023, 40(9): 97405-.
Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors. Chin. Phys. Lett., 2023, 40(9): 97405-.
Kaluarachchi U S, Taufour V, Sapkota A, Borisov V, Kong T, Meier W R, Kothapalli K, Ueland B G, Kreyssig A, Valentí R, McQueeney R J, Goldman A I, Bud'ko S L, and Canfield P C 2017 Phys. Rev. B96 140501
[3]
Lee S, de la Peña G, Sun S X L, Mitrano M, Fang Y, Jang H, Lee J S, Eckberg C, Campbell D, Collini J, Paglione J, de Groot F M F, and Abbamonte P 2019 Phys. Rev. Lett.122 147601
Windsor Y W, Lee S E, Zahn D, Borisov V, Thonig D, Kliemt K, Ernst A, Schüßler-Langeheine C, Pontius N, Staub U, Krellner C, Vyalikh D V, Eriksson O, and Rettig L 2022 Nat. Mater.21 514
Liu X, Liu D F, Zhao L, Guo Q, Mu Q G, Chen D Y, Shen B, Yi H M, Huang J W, He J F, Peng Y Y, Liu Y, He S L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Ren Z A, and Zhou X J 2013 Chin. Phys. Lett.30 127402
[15]
Kim T K, Pervakov K S, Evtushinsky D V, Jung S W, Poelchen G, Kummer K, Vlasenko V A, Sadakov A V, Usoltsev A S, Pudalov V M, Roditchev D, Stolyarov V S, Vyalikh D V, Borisov V, Valentí R, Ernst A, Eremeev S V, and Chulkov E V 2021 Phys. Rev. B103 174517
Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein K D, Wu W, Julian S R, Kim Y J, Mazin I I, and Boeri L 2015 Phys. Rev. Lett.114 047001