Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure
Yiding Liu1,2 , Qiang Fan3 , Jianhui Yang1 , Lili Wang4 , Weibin Zhang5 , and Gang Yao6,7*
1 College of Mathematics and Physics, Leshan Normal University, Leshan 614004, China2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China3 School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China4 Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, China5 College of Physics and Electronics Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China6 School of Physical Science and Technology, Southwest University, Chongqing 400715, China7 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract :Hydrides offer an opportunity to study high critical temperature (high-$T_{\rm c}$) superconductivity at experimentally achievable pressures. However, the pressure needed remains extremely high. Using density functional theory calculations, herein we demonstrate that a new rare earth hydride ErH$_{2}$ could be superconducting with $T_{\rm c} \sim 80$ K at 14.5 GPa, the lowest reported value for compressed hydrides to date. Intriguingly, due to Kondo destruction, superconductivity was prone to exist at 15 GPa. We also reveal an energy gap at 20 GPa on the background of normal metallic states. At 20 GPa, this compressed system could act as a host of superconductor judged from a sharp jump of spontaneous magnetic susceptibility with an evanescent spin density of state at Fermi level. Finally, electron pairing glue for ErH$_{2}$ at these three typical pressures was attributed to the antiferromagnetic spin fluctuation.
收稿日期: 2022-09-18
出版日期: 2022-12-04
:
74.10.+v
(Occurrence, potential candidates)
74.70.Tx
(Heavy-fermion superconductors)
74.20.Pq
(Electronic structure calculations)
74.62.Fj
(Effects of pressure)
[1] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[2] Gao G, Oganov A R, Bergara A et al. 2008 Phys. Rev. Lett. 101 107002
[3] Kim D Y, Scheicher R H, and Ahuja R 2009 Phys. Rev. Lett. 103 077002
[4] Drozdov A, Eremets M, Troyan I, Ksenofontov V, and Shylin S 2015 Nature 525 73
[5] Li X F and Peng F 2017 Lnorg. Chem. 56 13759
[6] Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[7] Somayazulu M, Ahart M, Mishra A K et al. 2019 Phys. Rev. Lett. 122 027001
[8] Drozdov A P, Kong P P, Minkov V S et al. 2019 Nature 569 528
[9] Hao S, Zhang Z H, Cui T, Pickard C J, Kresin V Z, and Duan D F 2021 Chin. Phys. Lett. 38 107401
[10] Peng F, Sun Y, Pickard C J et al. 2017 Phys. Rev. Lett. 119 107001
[11] Sun Y, Lv J, Xie Y, Liu H, and Ma Y 2019 Phys. Rev. Lett. 123 097001
[12] Yang L, Peng S M, Long X G et al. 2010 J. Appl. Phys. 107 054903
[13] Wixom R R, Browning J F, Snow C S, Schultz P, and Jennison D R 2008 J. Appl. Phys. 103 123708
[14] Bonnet J and Daou J 1977 J. Appl. Phys. 48 964
[15] Hou P G, Tian F B, Li D et al. 2014 J. Chem. Phys. 141 054703
[16] Kuzovnikov M A, Eremets M I, Drozdov A P, and Tkacz M 2017 Solid State Commun. 263 23
[17] Gegenwart P, Si Q, and Steglich F 2008 Nat. Phys. 4 186
[18] Ikeda H, Suzuki M T, and Arita R 2015 Phys. Rev. Lett. 114 147003
[19] Nakai Y, Iye T, Kitagawa S et al. 2013 Phys. Rev. B 87 174507
[20] Pines D 2013 J. Phys. Chem. B 117 13145
[21] Tôru M and Kazuo U 2003 Rep. Prog. Phys. 66 1299
[22] Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943
[23] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505
[24] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[25] Si Q M and Paschen S 2013 Phys. Status Solidi B 250 425
[26] Segall M, Lindan Philip J D, Probert M J et al. 2002 J. Phys.: Condens. Matter 14 2717
[27] Perdew J P, Chevary J A, Vosko S H et al. 1992 Phys. Rev. B 46 6671
[28] Xu H X, Lee D, Sinnott S B et al. 2009 Phys. Rev. B 80 144104
[29] Montanari B and Harrison N M 2002 Chem. Phys. Lett. 364 528
[30] Vajda P and Daou J 1994 Phys. Rev. B 49 3275
[31] Biasini M, Ferro G, Kontrym-Sznajd G, and Czopnik A 2002 Phys. Rev. B 66 075126
[32] Kittel C 1996 Introduction to Solid State Physics (New Jersey: John Wiley & Sons Inc.)
[33] Hoshino S and Kuramoto Y 2013 Phys. Rev. Lett. 111 026401
[34] Baroni S, de Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[35] Settai R, Takeuchi T, and Ōnuki Y 2007 J. Phys. Soc. Jpn. 76 051003
[36] Kittaka S, Aoki Y, Shimura Y et al. 2014 Phys. Rev. Lett. 112 067002
[37] Zhou Y, Wu Q, Rosa Priscila F S et al. 2017 Sci. Bull. 62 1439
[38] See Supplemental Material for supporting information of the hypotheses of superconductivity of ErH$_{2}$ at 15 and 20 GPa.
[39] Feng D and Jin G J 2012 Condensed Matter Physics (Beijing: Higher Education Press) vol 1 pp 503–524 (in Chinese)
[40] Subedi A, Zhang L, Singh D J, and Du M H 2008 Phys. Rev. B 78 134514
[41] Chen G F, Li Z, Wu D et al. 2008 Phys. Rev. Lett. 100 247002
[42] Sun H H, Zhang K W, Hu L H et al. 2016 Phys. Rev. Lett. 116 257003
[43] Ran S, Eckberg C, Ding Q P et al. 2019 Science 365 684
[1]
YAN Yan;GONG Jie;ZONG Zhan-Guo;. Electronic, Vibrational, and Superconducting Properties of High-Pressure Metallic SiH4 : ab initio Calculations [J]. 中国物理快报, 2010, 27(1): 17401-017401.
[2]
REN Zhi-An;LU Wei;YANG Jie;YI Wei;SHEN Xiao-Li;LI Zheng-Cai;CHE Guang-Can;DONG Xiao-Li;SUN Li-Ling;ZHOU Fang;ZHAO Zhong-Xian. Superconductivity at 55K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-x Fx ]FeAs [J]. 中国物理快报, 2008, 25(6): 2215-2216.
[3]
ZHOU Yuan;LI Jun;GONG Chang-De;. Possibility of Coexistence of Ferromagnetism and Superconductivity in an Anisotropic Quasi-Two-Dimensional System [J]. 中国物理快报, 2004, 21(9): 1805-1807.
[4]
YANG Hai-Peng;LU Xi-Feng; WEN Hai-Hu. Novel Transitions in Doped Mott-Insulator Kx CoO2 [J]. 中国物理快报, 2003, 20(5): 729-730.
[5]
WEN Hai-Hu;YANG Hai-Peng;LU Xi-Feng;YAN Jing. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides [J]. 中国物理快报, 2003, 20(5): 725-728.
[6]
YANG Fan;HAN Ru-Shan;TONG Ning-Hua;GUO Wei. Electronic Structural Properties and Superconductivity of Diborides in the MgB2 Structure [J]. 中国物理快报, 2002, 19(9): 1336-1339.
[7]
YANG Hai-Peng;WEN Hai-Hu;ZHAO Zhi-Wen;LI Shi-Liang;ZHAO Zhong-Xian. Possible Superconductivity at 37K in Graphite-Sulfur Composite [J]. 中国物理快报, 2001, 18(12): 1648-1650.
[8]
ZHOU Xingjiang;YAO Yushu;DONG Cheng;LI Jingwei;JIA Shunlian;ZHAO Zhongxian. Superconductivity in a New (Sr, Y)CuO2 System Synthesized
Under High Pressure
[J]. 中国物理快报, 1994, 11(2): 123-126.
[9]
YU Jinnan;GAO Zhongcai;WANG Yuzhu;CHEN Yiren;SHI Yuemei. Radiation Effect on YBa2 Cu3 O7-δ by 35 MeV Proton Irradiation [J]. 中国物理快报, 1991, 8(7): 368-371.
[10]
YU Jinnan;WANG Yuzhu;GAO Zhongcai*;CHEN Yiren;SHI Yuemei. RADIATION EFFECT ON Bi(Pb)-Sr-Ca-Cu-O BY 35MeV PROTON IRRADIATION [J]. 中国物理快报, 1990, 7(12): 564-567.
[11]
WEN Haihu;SHENG Yanya;ZHANG Fengying;SHI Yicai;REN Zhaoxing;CAO Xiaowen. SUPERCONDUCTING FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA IONS DEPOSITION
[J]. 中国物理快报, 1990, 7(10): 473-476.
[12]
LIN Rong;CHEN Xianhui;CHEN Zuyao;QIAN Yitai;XIA Jiansheng*;WANG Shunxi*;ZHANG Qirui*. SUPERCONDUCTIVITY IN GLASSY Bi-Sr-Ca-Cu-O SYSTEM [J]. 中国物理快报, 1989, 6(12): 553-556.
[13]
LI Anli;ZHENG Shengnan;HUANG Hanchen;LI Donghong;DU Hongshan;DIN Honglin;SUN Hancheng;ZHU Shengyun
. TEMPERATURE DEPENDENCE OF POSITRON ANNIHILATION PARAMETERS IN HIGH Tc SUPERCONDUCTOR YBa2 Cu3 O7-x
[J]. 中国物理快报, 1989, 6(12): 549-552.
[14]
DING Shiying;YU Zheng;YAN Jialie;QIU Li. PROPERTIES OF TRANSPORT CURRENT FOR POLYCRYSTALLINE TBCCO SUPERCONDUCTOR WITH HIGH DENSITY [J]. 中国物理快报, 1989, 6(11): 514-517.
[15]
LIU Fusui. HIGH Tc SUPERCONDUCTIVITY ENHANCED BY ANTIFERROMAGNETISM [J]. 中国物理快报, 1989, 6(10): 473-476.