Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors
Yuhao Gu1, Kun Jiang1,2, Xianxin Wu3, and Jiangping Hu1,4*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 4Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract:We predict that the square lattice layer formed by [Co$_2$N$_2$]$^{2-}$ diamond-like units can host high-temperature superconductivity. The layer appears in the stable ternary cobalt nitride, BaCo$_2$N$_2$. The electronic physics of the material stems from Co$_2$N$_2$ layers where the dimerized Co pairs form a square lattice. The low energy physics near Fermi energy can be described by an effective two-orbital model. Without considering interlayer couplings, the two orbitals are effectively decoupled. This electronic structure satisfies the “gene” character proposed for unconventional high-temperature superconductors. We predict that the leading superconducting pairing instability is driven from an extended $s$-wave ($s^\pm$) to a $d$-wave by hole doping, e.g., in Ba$_{1-x}$K$_x$Co$_2$N$_2$. This study provides a new platform to establish the superconducting mechanism of unconventional high-temperature superconductivity.