Holographic Superconductor Models with RF 2 Corrections
ZHAO Zi-Xu, PAN Qi-Yuan** , JING Ji-Liang**
Institute of Physics and Department of Physics, Hunan Normal University, Changsha 410081 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081
Abstract :We investigate the effect of the RF 2 correction on the holographic superconductor model in the background of AdS black hole, where R is the Ricci scalar of spacetime and F 2 =Fμν Fμν is the Maxwell field strength. We observe that, similar to the effect caused by the Weyl correction, the higher RF 2 correction term can make it easier for the scalar operator to condense and result in the larger deviation from the expected relation in the gap frequency. However, we find that the condensation gap becomes larger as the RF 2 correction term increases, which is in strong contrast to the influences of the Weyl correction and Gauss–Bonnet correction.
收稿日期: 2013-07-22
出版日期: 2013-12-13
:
11.25.Tq
(Gauge/string duality)
04.70.Bw
(Classical black holes)
74.20.-z
(Theories and models of superconducting state)
[1] Maldacena J 1998 Adv. Theor. Math. Phys. 2 231 Maldacena J 1999 Int. J. Theor. Phys. 38 1113 [2] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105 [3] Witten E 1998 Adv. Theor. Math. Phys. 2 253 [4] Gubser S S 2008 Phys. Rev. D 78 065034 [5] Hartnoll S A, Herzog C P and Horowitz G T 2008 J. High Energy Phys. 12 015 [6] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601 [7] Hartnoll S A 2009 Classical Quantum Gravity 26 224002 [8] Herzog C P 2009 J. Phys. A 42 343001 [9] Horowitz G T 2011 Lect. Notes Phys. 828 313 [10] Gregory R, Kanno S and Soda J 2009 J. High Energy Phys. 0910 010 [11] Pan Q Y, Wang B, Papantonopoulos E, Oliveria J and Pavan A B 2010 Phys. Rev. D 81 106007 [12] Ge X H, Wang B, Wu S F and Yang G H 2010 J. High Energy Phys. 1008 108 [13] Liu Y Q, Pan Q Y, Wang B and Cai R G 2010 Phys. Lett. B 693 343 [14] Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007 Cai R G, Nie Z Y and Zhang H Q 2011 Phys. Rev. D 83 066013 [15] Kuang X M, Li W J and Ling Y 2010 J. High Energy Phys. 1012 069 [16] Li H F, Cai R G and Zhang H Q 2011 J. High Energy Phys. 1104 028 [17] Chen S B, Pan Q Y and Jing J L 2012 Chin. Phys. B 21 040403 [18] Peng Y and Pan Q Y 2013 Commun. Theor. Phys. 59 110 [19] Jing J L and Chen S B 2010 Phys. Lett. B 686 68 [20] Jing J L, Wang L C, Pan Q Y and Chen S B 2011 Phys. Rev. D 83 066010 [21] Pan Q Y, Jing J L and Wang B 2011 Phys. Rev. D 84 126020 [22] Jing J L, Pan Q Y and Chen S B 2011 J. High Energy Phys. 1111 045 [23] Gangopadhyay S and Roychowdhury D 2012 J. High Energy Phys. 1205 002 Gangopadhyay S and Roychowdhury D 2012 J. High Energy Phys. 1205 156 Gangopadhyay S and Roychowdhury D 2012 J. High Energy Phys. 1208 104 [24] Liu Y Q, Peng Y and Wang B 2012 arXiv:1202.3586 [hep-th] [25] Banerjee R, Gangopadhyay S, Roychowdhury D and Lala A 2013 Phys. Rev. D 87 104001 [26] Jing J L, Pan Q Y and Chen S B 2012 Phys. Lett. B 716 385 [27] Roychowdhury D 2013 Phys. Lett. B 718 1089 [28] Zhao Z X, Pan Q Y, Chen S B and Jing J L 2013 Nucl. Phys. B 871 98 [29] Wu J P, Cao Y, Kuang X M and Li W J 2011 Phys. Lett. B 697 153 [30] Ma D Z, Cao Y and Wu J P 2011 Phys. Lett. B 704 604 [31] Momeni D and Setare M R 2011 Mod. Phys. Lett. A 26 2889 [32] Roychowdhury D 2012 Phys. Rev. D 86 106009 [33] Momeni D, Majd N and Myrzakulov R 2012 Europhys. Lett. 97 61001 Momeni D, Setare M R and Myrzakulov R 2012 Int. J. Mod. Phys. A 27 1250128 [34] Zhao Z X, Pan Q Y and Jing J L 2013 Phys. Lett. B 719 440 [35] Myers R C, Sachdev S and Singh A 2011 Phys. Rev. D 83 066017 [36] Cai R G and Pang D W 2011 Phys. Rev. D 84 066004 [37] Liu Y Q, Pan Q Y and Wang B 2011 Phys. Lett. B 702 94 [38] Horowitz G T and Roberts M M 2008 Phys. Rev. D 78 126008 [39] Sert ? and Adak M 2013 arXiv:1301.3328 [hep-th]
[1]
. [J]. 中国物理快报, 2015, 32(12): 121204-121204.
[2]
. [J]. 中国物理快报, 2015, 32(4): 47401-047401.
[3]
CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach [J]. 中国物理快报, 2012, 29(4): 41101-041101.
[4]
WANG Zhan-Yun;**;KE San-Min;HAO Kun;SHI Kang-Jie
. Flat Currents of Green–Schwarz Superstring in AdS3 ×S 3 under Symmetry Transformations [J]. 中国物理快报, 2011, 28(3): 31101-031101.
[5]
HUANG Tao;ZUO Fen. Remarks on Two-Dimensional Power Correction in Soft Wall Model [J]. 中国物理快报, 2008, 25(10): 3601-3604.
[6]
ZHANG Li-Xia;WU Sheng;XIE Xiao-Ning; XIONG Chuan-Hua;YUE Rui-Hong;SHI Kang-Jie. Flat Currents and Solutions of the Green--Schwarz Superstring on AdS5 i×S5 [J]. 中国物理快报, 2007, 24(11): 3092-3095.