1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 3Songshan Lake Materials Laboratory, Dongguan 523808 4Beijing Academy of Quantum Information Sciences, Beijing 100193
Abstract:In paired Fermi systems, strong many-body effects exhibit in the crossover regime between the Bardeen–Cooper–Schrieffer (BCS) and the Bose–Einstein condensation (BEC) limits. The concept of the BCS–BEC crossover, which is studied intensively in the research field of cold atoms, has been extended to condensed matters. Here by analyzing the typical superconductors within the BCS–BEC phase diagram, we find that FeSe-based superconductors are prone to shift their positions in the BCS–BEC crossover regime by charge doping or substrate substitution, since their Fermi energies and the superconducting gap sizes are comparable. Especially at the interface of single-layer FeSe on SrTiO$_{3}$ substrate, the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials, indicating that the pairing interaction is effectively modulated. We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons, demonstrating its flexible tunability within the BCS–BEC crossover regime.
Randeria M, Zwerger W and Zwierlein M 2012 The BCS–BEC Crossover And The Unitary Fermi Gas Edited By Zwerger W (Berlin, Heidelberg: Springer) chap 1 p 1
[6]
Gaebler J P, Stewart J T, Drake T E, Jin D S, Perali A, Pieri P and Strinati G C 2010 Nat. Phys.6 569
Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J and Yu X H 1989 Phys. Rev. Lett.62 2317
Uemura Y J, Le L P, Luke G M, Sternlieb B J, Wu W D, Brewer J H, Riseman T M, Seaman C L, Maple M B, Ishikawa M, Hinks D G, Jorgensen J D, Saito G and Yamochi H 1991 Phys. Rev. Lett.66 2665
Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, von Löhneysen H, Shibauchi T and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA111 16309
[17]
Watashige T, Arsenijević S, Yamashita T, Terazawa D, Onishi T, Opherden L, Kasahara S, Tokiwa Y, Kasahara Y, Shibauchi T, von Löhneysen H, Wosnitza J and Matsuda Y 2017 J. Phys. Soc. Jpn.86 014707
[18]
Lubashevsky Y, Lahoud E, Chashka K, Podolsky D and Kanigel A 2012 Nat. Phys.8 309
[19]
Okazaki K, Ito Y, Ota Y, Kotani Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Niitaka S, Hanaguri T, Takagi H, Chainani A and Shin S 2014 Sci. Rep.4 4109
[20]
Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Randeria M and Kanigel A 2017 Sci. Adv.3 e1602372
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett.29 037402
[25]
Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K and Ma X C 2014 Chin. Phys. Lett.31 017401
[26]
Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q and Zhou X J 2012 Nat. Commun.3 931
[27]
Zhang H, Zhang D, Lu X, Liu C, Zhou G, Ma X, Wang L, Jiang P, Xue Q K and Bao X 2017 Nat. Commun.8 214
[28]
Zhao W W, Li M D, Chang C Z, Jiang J, Wu L J, Liu C X, Moodera J S, Zhu Y M and Chan M H W 2018 Sci. Adv.4 eaao2682
[29]
Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature515 245
[30]
Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X and Guo J 2016 Phys. Rev. B94 081116
[31]
Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X and Guo J 2018 Phys. Rev. B97 035408
[32]
Zhang S, Wei T, Guan J, Zhu Q, Qin W, Wang W, Zhang J, Plummer E W, Zhu X, Zhang Z and Guo J 2019 Phys. Rev. Lett.122 066802
[33]
Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater.10 273
[34]
Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z and Feng D L 2015 Phys. Rev. B92 060504
Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H and Zhao J 2016 Nat. Mater.15 159
[43]
Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A and Zhao J 2017 Nat. Commun.8 123