Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi
Weizheng Cao1, Yunlong Su1, Qi Wang1,2, Cuiying Pei1, Lingling Gao1, Yi Zhao1, Changhua Li1, Na Yu1, Jinghui Wang1,2*, Zhongkai Liu1,2, Yulin Chen1,2,3, Gang Li1,2*, Jun Li1,2, and Yanpeng Qi1,2,4*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China 3Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK 4Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
Abstract:As a new type of quantum state of matter hosting low energy relativistic quasiparticles, Weyl semimetals (WSMs) have attracted significant attention for scientific community and potential quantum device applications. In this study, we present a comprehensive investigation of the structural, magnetic, and transport properties of noncentrosymmetric $R$AlSi ($R$ = Sm, Ce), which have been predicted to be new magnetic WSM candidates. Both samples exhibit nonsaturated magnetoresistance, with about 900% and 80% for SmAlSi and CeAlSi, respectively, at temperature of 1.8 K and magnetic field of 9 T. The carrier densities of SmAlSi and CeAlSi exhibit remarkable change around magnetic transition temperatures, signifying that the electronic states are sensitive to the magnetic ordering of rare-earth elements. At low temperatures, SmAlSi reveals prominent Shubnikov–de Haas oscillations associated with the nontrivial Berry phase. High-pressure experiments demonstrate that the magnetic order is robust and survival under high pressure. Our results would yield valuable insights into WSM physics and potentials in applications to next-generation spintronic devices in the $R$AlSi ($R$ = Sm, Ce) family.
Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, and Hasan M Z 2015 Science347 294
[5]
Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, Fang Z, Dai X, Qian T, and Ding H 2015 Phys. Rev. X5 031013
[6]
Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X, and Chen G 2015 Phys. Rev. X5 031023
[7]
Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, and Hasan M Z 2015 Nat. Commun.6 7373
Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science365 1286
[11]
Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater.16 1090
[12]
Belopolski I, Manna K, Sanchez D S, Chang G, Ernst B, Yin J, Zhang S S, Cochran T, Shumiya N, Zheng H, Singh B, Bian G, Multer D, Litskevich M, Zhou X, Huang S M, Wang B, Chang T R, Xu S Y, Bansil A, Felser C, Lin H, and Hasan M Z 2019 Science365 1278
[13]
Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, and Lei H 2018 Nat. Commun.9 3681
[14]
Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, and Dudin P 2019 Science365 1282
Hodovanets H, Eckberg C J, Zavalij P Y, Kim H, Lin W C, Zic M, Campbell D J, Higgins J S, and Paglione J 2018 Phys. Rev. B98 245132
[24]
Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E, and White J S 2020 Phys. Rev. Lett.124 017202
[25]
Meng B, Wu H, Qiu Y, Wang C, Liu Y, Xia Z, Yuan S, Chang H, and Tian Z 2019 APL Mater.7 051110
[26]
Destraz D, Das L, Tsirkin S S, Xu Y, Neupert T, Chang J, Schilling A, Grushin A G, Kohlbrecher J, Keller L, Puphal P, Pomjakushina E, and White J S 2020 npj Quantum Mater.5 5
[27]
Liu W, Zhao J, Meng F, Rahman A, Qin Y, Fan J, Pi L, Tian Z, Du H, Zhang L, and Zhang Y 2021 Phys. Rev. B103 214401
Gaudet J, Yang H Y, Baidya S, Lu B, Xu G, Zhao Y, Rodriguez-Rivera J A, Hoffmann C M, Graf D E, Torchinsky D H, Vanderbilt P N D, Tafti F, and Broholm C L 2021 Nat. Mater.20 1650
[31]
Xu L, Niu H, Bai Y, Zhu H, Yuan S, He X, Yang Y, Xia Z, Zhao L, and Tian Z 2021 arXiv:2107.11957 [cond-mat.mtrl-sci]
[32]
Yang H Y, Singh B, Gaudet J, Lu B, Huang C Y, Chiu W C, Huang S M, Wang B, Bahrami F, and Xu B 2021 Phys. Rev. B103 115143
[33]
TOPAS 2013 Version 5 (Karlsruhe, Germany: Bruker AXS)