Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems
Shaobo Liu1,2, Jie Yuan1,3,4, Sheng Ma1,2, Zouyouwei Lu1,2, Yuhang Zhang1,2, Mingwei Ma1,4, Hua Zhang1,2, Kui Jin1,2,3,4, Li Yu1,2,4, Fang Zhou1,2,4*, Xiaoli Dong1,2,3,4*, and Zhongxian Zhao1,2,3,4
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract:The angular-dependent magnetoresistance (AMR) of the $ab$ plane is measured on the single crystals of iron-chalcogenide FeSe$_{1-x}$S$_{x}$ ($x = 0$, 0.07, 0.13 and 1) and FeSe$_{1-y}$Te$_{y}$ ($y = 0.06$, 0.61 and 1) at various temperatures under fields up to 9 T. A pronounced twofold-anisotropic carrier-scattering effect is identified by AMR, and attributed to a magnetic-field-induced spin nematicity that emerges from the tetragonal normal-state regime below a characteristic temperature $T_{\rm sn}$. This magnetically polarized spin nematicity is found to be ubiquitous in the isoelectronic FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ systems, no matter whether the sample shows an electronic nematic order at $T_{\rm s} \lesssim T_{\rm sn}$, or an antiferromagnetic order at $T_{\rm N} < T_{\rm sn}$, or neither order. Importantly, we find that the induced spin nematicity shows a very different response to sulfur substitution from the spontaneous electronic nematicity: The spin-nematic $T_{\rm sn}$ is not suppressed but even enhanced by the substitution, whereas the electronic-nematic $T_{\rm s}$ is rapidly suppressed, in the FeSe$_{1-x}$S$_{x}$ system. Furthermore, we find that the superconductivity is significantly suppressed with the enhancement of the induced spin nematicity in both FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ samples.
Zhao J, Huang Q, de la C C, Li S L, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, and Dai P C 2008 Nat. Mater.7 953
[2]
Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeš K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, and Broholm C 2010 Nat. Mater.9 718
[3]
Lumsden M D, Christianson A D, Goremychkin E A, Nagler S E, Mook H A, Stone M B, Abernathy D L, Guidi T, MacDougall G J, de la C C, Sefat A S, McGuire M A, Sales B C, and Mandrus D 2010 Nat. Phys.6 182
[4]
Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, and Matsuda Y 2012 Nature486 382
Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L, and Mao Z Q 2009 Phys. Rev. Lett.102 247001
[8]
Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, and Valentí R 2015 Nat. Phys.11 953
[9]
Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, and Mao Z Q 2008 Phys. Rev. B78 224503
[10]
Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, M W P, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, and Wu M K 2008 Europhys. Lett.84 37002
[11]
Li S L, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J P, Huang Y L, Hsu F C, Yeh K W, Wu M K, and Dai P C 2009 Phys. Rev. B79 054503
[12]
Zaliznyak I A, Xu Z J, Wen J S, Tranquada J M, Gu G D, Solovyov V, Glazkov V N, Zheludev A I, Garlea V O, and Stone M B 2012 Phys. Rev. B85 085105
[13]
Man H, Guo J G, Zhang R, Schönemann R, Yin Z P, Fu M X, Stone M B, Huang Q Z, Song Y, Wang W Y, Singh D J, Lochner F, Hickel T, Eremin I, Harriger L, Lynn J W, Broholm C, Balicas L, Si Q M, and Dai P C 2017 npj Quantum Mater.2 14
Wang Q S, Shen Y, Pan B Y, Zhang X W, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, and Zhao J 2016 Nat. Commun.7 12182
[17]
Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, and Zhao J 2016 Nat. Mater.15 159
Chen T, Chen Y Z, Kreisel A, Lu X Y, Schneidewind A, Qiu Y M, Park J T, Perring T G, Stewart J R, Cao H B, Zhang R, Li Y, Rong Y, Wei Y, Andersen B M, Hirschfeld P J, Broholm C, and Dai P C 2019 Nat. Mater.18 709
[20]
Yuan D N, Yuan J, Huang Y L, Ni S L, Feng Z P, Zhou H X, Mao Y Y, Jin K, Zhang G M, Dong X L, Zhou F, and Zhao Z X 2016 Phys. Rev. B94 060506(R)
Ma M W, Bourges P, Sidis Y, Xu Y, Li S Y, Hu B Y, Li J R, Wang F, and Li Y 2017 Phys. Rev. X7 021025
[25]
Liu S B, Yuan J, Huh S, Ryu H, Ma M W, Hu W, Li D, Ma S, Ni S L, Shen P P, Jin K, Yu L, Kim C Y, Zhou F, Dong X L, and Zhao Z X 2020 arXiv:2009.13286 [cond-mat.supr-con]
[26]
Liu S B, Ma S, Wang Z S, Hu W, Li Z A, Liang Q M, Wang H, Zhang Y H, W L Z Y, Yuan J, Jin K, Li J Q, Pi L, Yu L, Zhou F, Dong X L, and Zhao Z X 2021 Chin. Phys. Lett.38 057401
[27]
Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L, and Luo J L 2008 Phys. Rev. B78 224512
Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, and Feng D L 2014 Phys. Rev. X4 031041
[42]
Miao J, Niu X H, Xu D F, Yao Q, Chen Q Y, Ying T P, Li S Y, Fang Y F, Zhang J C, Ideta S, Tanaka K, Xie B P, Feng D L, and Chen F 2017 Phys. Rev. B95 205127
[43]
Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, and Zhao J 2017 Nat. Commun.8 123
Yi M, Wang M, Kemper A F, Mo S K, Hussain Z, Bourret-Courchesne E, Lanzara A, Hashimoto M, Lu D H, Shen Z X, and Birgeneau R J 2015 Phys. Rev. Lett.115 256403
[46]
Ni S L, Sun J P, Liu S B, Yuan J, Yu L, Ma M W, Zhang L, Pi L, Zheng P, Shen P P, Li D, Shi D E, Li G B, Sun J L, Zhang G M, Jin K, Cheng J G, Zhou F, Dong X L, and Zhao Z X 2019 arXiv:1912.12614 [cond-mat.supr-con]