Large Magnetoresistance and Nontrivial Berry Phase in Nb$_3$Sb Crystals with A15 Structure
Qin Chen1 , Yuxing Zhou1 , Binjie Xu1 , Zhefeng Lou1 , Huancheng Chen1 , Shuijin Chen1 , Chunxiang Wu1 , Jianhua Du2 , Hangdong Wang3 , Jinhu Yang3 , and Minghu Fang1,4*
1 Department of Physics, Zhejiang University, Hangzhou 310027, China2 Department of Applied Physics, China Jiliang University, Hangzhou 310018, China3 Department of Physics, Hangzhou Normal University, Hangzhou 310036, China4 Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
Abstract :Compounds with the A15 structure have attracted extensive attention due to their superconductivity and nontrivial topological band structures. We have successfully grown Nb$_3$Sb single crystals with the A15 structure and systematically measured the longitudinal resistivity, Hall resistivity and quantum oscillations in magnetization. Similar to other topological trivial/nontrivial semimetals, Nb$_3$Sb exhibits large magnetoresistance (MR) at low temperatures (717$\%$, 2 K and 9 T), unsaturating quadratic field dependence of MR and up-turn behavior in $\rho_{xx}(T)$ curves under magnetic field, which is considered to result from a perfect hole-electron compensation, as evidenced by the Hall resistivity measurements. The nonzero Berry phase obtained from the de-Hass van Alphen (dHvA) oscillations demonstrates that Nb$_3$Sb is topologically nontrivial. These results indicate that Nb$_{3}$Sb superconductor is also a semimetal with large MR and nontrivial Berry phase. This indicates that Nb$_{3}$Sb may be another platform to search for the Majorana zero-energy mode.
收稿日期: 2021-05-03
Editors' Suggestion
出版日期: 2021-08-02
:
72.15.Gd
(Galvanomagnetic and other magnetotransport effects)
引用本文:
. [J]. 中国物理快报, 2021, 38(8): 87501-.
Qin Chen, Yuxing Zhou, Binjie Xu, Zhefeng Lou, Huancheng Chen, Shuijin Chen, Chunxiang Wu, Jianhua Du, Hangdong Wang, Jinhu Yang, and Minghu Fang. Large Magnetoresistance and Nontrivial Berry Phase in Nb$_3$Sb Crystals with A15 Structure. Chin. Phys. Lett., 2021, 38(8): 87501-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/8/087501
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I8/87501
[1] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, and Cava R J 2014 Nature 514 205
[2] Tafti F F, Gibson Q, Kushwaha S, Krizan J W, Haldolaarachchige N, and Cava R J 2016 Proc. Natl. Acad. Sci. USA 113 E3475
[3] He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J, and Li S Y 2014 Phys. Rev. Lett. 113 246402
[4] Liang T, Gibson Q, Ali M N, Liu M, Cava R, and Ong N 2015 Nat. Mater. 14 280
[5] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, and Fang Z 2012 Phys. Rev. B 85 195320
[6] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R, and Ong N 2015 Science 350 413
[7] Guo P J, Yang H C, Zhang B J, Liu K, and Lu Z Y 2016 Phys. Rev. B 93 235142
[8] Zeng L K, Lou R, Wu D S, Xu Q N, Guo P J, Kong L Y, Zhong Y G, Ma J Z, Fu B B, Richard P, Wang P, Liu G T, Lu L, Huang Y B, Fang C, Sun S S, Wang Q, Wang L, Shi Y G, Weng H M, Lei H C, Liu K, Wang S C, Qian T, Luo J L, and Ding H 2016 Phys. Rev. Lett. 117 127204
[9] Niu X H, Xu D F, Bai Y H, Song Q, Shen X P, Xie B P, Sun Z, Huang Y B, Peets D C, and Feng D L 2016 Phys. Rev. B 94 165163
[10] Yang H Y, Nummy T, Li H, Jaszewski S, Abramchuk M, Dessau D S, and Tafti F 2017 Phys. Rev. B 96 235128
[11] Chen S, Lou Z, Zhou Y, Chen Q, Xu B, Wu C, Du J, Yang J, Wang H, and Fang M 2021 Chin. Phys. Lett. 38 017202
[12] Zhang S, Wu Q, Liu Y, and Yazyev O V 2019 Phys. Rev. B 99 035142
[13] Zhou Y, Lou Z, Zhang S, Chen H, Chen Q, Xu B, Du J, Yang J, Wang H, Xi C, Pi L, Wu Q, Yazyev O V, and Fang M 2020 Phys. Rev. B 102 115145
[14] Chen Q, Lou Z, Zhang S, Xu B, Zhou Y, Chen H, Chen S, Du J, Wang H, Yang J, Wu Q, Yazyev O V, and Fang M 2020 Phys. Rev. B 102 165133
[15] Stewart G 2015 Physica C 514 28
[16] Kim M, Wang C Z, and Ho K M 2019 Phys. Rev. B 99 224506
[17] Derunova E, Sun Y, Felser C, Parkin S, Yan B, and Ali M 2019 Sci. Adv. 5 eaav8575
[18] Knapp G S, Bader S D, and Fisk Z 1976 Phys. Rev. B 13 3783
[19] Arko A, Fisk Z, and Mueller F 1977 Phys. Rev. B 16 1387
[20] Sellmyer D, Liebowitz D, Arko A, and Fisk Z 1980 J. Low Temp. Phys. 40 629
[21] Gao H, Venderbos J W, Kim Y, and Rappe A M 2019 Annu. Rev. Mater. Res. 49 153
[22] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H, and Fang C 2019 Nature 566 475
[23] Zhao Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, and Li Q 2015 Phys. Rev. B 92 041104
[24] Khveshchenko D 2001 Phys. Rev. Lett. 87 206401
[25] Du J, Lou Z, Zhang S et al. 2018 Phys. Rev. B 97 245101
[26] Thoutam L, Wang Y, Xiao Z, Das S, Luican-Mayer A, Divan R, Crabtree G, and Kwok W 2015 Phys. Rev. Lett. 115 046602
[27] Pippard A B 1989 Magnetoresistance in Metals (New York: Cambridge University Press)
[28] Wang A, Graf D, Liu Y et al. 2017 Phys. Rev. B 96 121107
[29] Chen B, Duan X, Wang H et al. 2018 npj Quantum Mater. 3 1
[30] Zhou Q, Rhodes D, Zhang Q, Tang S, Schönemann R, and Balicas L 2016 Phys. Rev. B 94 121101
[31] Takatsu H, Ishikawa J J, Yonezawa S, Yoshino H, Shishidou T, Oguchi T, Murata K, and Maeno Y 2013 Phys. Rev. Lett. 111 056601
[32] Mun E, Ko H, Miller G J, Samolyuk G D, Bud'Ko S L, and Canfield P C 2012 Phys. Rev. B 85 035135
[33] Yuan Z, Lu H, Liu Y, Wang J, and Jia S 2016 Phys. Rev. B 93 184405
[34] Huang X, Zhao L, Long Y et al. 2015 Phys. Rev. X 5 031023
[35] Chen F, Lv H, Luo X, Lu W, Pei Q, Lin G, Han Y, Zhu X, Song W, and Sun Y 2016 Phys. Rev. B 94 235154
[36] Lifshitz I and Kosevich A 1956 Sov. Phys.-JETP 2 636
[37] Shoenberg D 2009 Magnetic Quantum Oscillations (Cambridge: Cambridge University Press)
[38] Mikitik G and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[1]
. [J]. 中国物理快报, 2023, 40(6): 67101-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 108501-.
[3]
. [J]. 中国物理快报, 2019, 36(6): 67201-.
[4]
. [J]. 中国物理快报, 2017, 34(3): 37102-037102.
[5]
ZHENG Ping;CHEN Gen-Fu;LI Zheng;HU Wan-Zheng;DONG Jing;LI Gang;WANG Nan-Lin;LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2 As2 (A=Sr, Ba) [J]. 中国物理快报, 2009, 26(10): 107401-107401.
[6]
DAI Bo;LIU Xiao-Xia;LEI Yong;Alain Nogaret. Magnetoresistance of Electrons Channelled by Microscopic Magnetic Field Modulation [J]. 中国物理快报, 2009, 26(3): 37202-037202.
[7]
SHENG Lei-Mei;GAO Wei;CAO Shi-Xun; ZHANG Jin-Cang. Magnetoresistance of Multiwalled Carbon Nanotube Yarns [J]. 中国物理快报, 2008, 25(9): 3397-3399.
[8]
WANG Zhi-Ming;XING Ding-Yu;ZHANG Shi-Yuan;XU Qing-Yu;Margriet VanBael;DU You-Wei. Magnetic-Field-Induced Semimetal-Insulator-like Transition in Highly Oriented Pyrolitic Graphite [J]. 中国物理快报, 2007, 24(1): 199-202.
[9]
XIONG Jian-Wen;HU Liang-Bin;ZHANG Zhen-Xi. Suppression of Direct Spin Hall Currents in Two-Dimensional Electronic Systems with both Rashba and Dresselhaus Spin-Orbit Couplings [J]. 中国物理快报, 2006, 23(5): 1278-1281.
[10]
ZHANG Ying;GAO Ben-Qing. Propagation of Cylindrical Waves in Media of Time-Dependent Permittivity [J]. 中国物理快报, 2005, 22(2): 446-449.
[11]
Jian-Qing WANG$;Jordan Peck;Finnobarr O’Grady;Nam Kim. Unified Understanding of Giant Magnetoresistance Effect and Magnetization in Granular Films with Two-Particle Size Distribution [J]. 中国物理快报, 2004, 21(11): 2255-2258.
[12]
LIU Ning;SUN Yang;ZHANG Yu-Heng. Mechanism of Insulator-Metal Transition in La2/3 Ca1/3 MnO3 :Collapse of Small Polaron
[J]. 中国物理快报, 2001, 18(7): 957-959.
[13]
XU Qing-Yu;NI Gang;WANG Zhi-Ming;SANG Hai;DU You-Wei. Hall Effect of (Co0.34 Fe0.66 )0.42 (SiO2 )0.58 Granular Films [J]. 中国物理快报, 2001, 18(5): 672-673.
[14]
XU Hui-ying;YU Wen-xue;KANG Jian;MAI Zhen-hong. Asymmetrical Spin-Polarized Tunneling in a Composed-Barrier Magnetic Tunnel Junctions Under the Forward and Reverse Biases [J]. 中国物理快报, 1999, 16(12): 919-921.
[15]
WANG Jing-hua;CHEN Ting-yong;WU Jian-hua;DAI Dao-sheng;NIE Jia-cai;ZHAO Bai-ru. Colossal Magnetoresistance of Polycrystalline (La0.7 Tb0.3 )2/3 Cal/3 MnO3 at Low Drive Field [J]. 中国物理快报, 1999, 16(8): 597-599.