1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 3Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China
Abstract:High-resolution angle-resolved photoemission measurements were taken on FeSe$_{1-x}$S$_x$ ($x$ = 0, 0.04, and 0.08) superconductors. With an ultrahigh energy resolution of 0.4 meV, unusual two hole bands near the Brillouin-zone center, which was possibly a result of additional symmetry breaking, were identified in all the sulfur-substituted samples. In addition, in both of the hole bands highly anisotropic superconducting gaps with resolution limited nodes were evidenced. We find that the larger superconducting gap on the outer hole band is reduced linearly to the nematic transition temperature while the gap on the inner hole is nearly S-substitution independent. Our observations strongly suggest that the superconducting gap increases with enhanced nematicity although the superconducting transition temperature is not only governed by the pairing strength, demonstrating strong constraints on theories in the FeSe family.
Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature604 59
[5]
Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio N, and Pasupathy A N 2022 Nat. Phys.18 196
Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C, and Davis J C 2010 Science327 181
[8]
Bohmer A E, Arai T, Hardy F, Hattori T, Iye T, Wolf T, von Lohneysen H, Ishida K, and Meingast C 2015 Phys. Rev. Lett.114 027001
[9]
Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, and Shen Z X 2011 Proc. Natl. Acad. Sci. USA108 6878
McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, and Cava R J 2009 Phys. Rev. Lett.103 057002
[16]
Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, and Khasanov R 2010 Phys. Rev. Lett.104 087003
[17]
Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, and Buechner B 2015 Nat. Mater.14 210
[18]
Coldea A I, Blake S F, Kasahara S, Haghighirad A A, Watson M D, Knafo W, Choi E S, McCollam A, Reiss P, Yamashita T, Bruma M, Speller S C, Matsuda Y, Wolf T, Shibauchi T, and Schofield A J 2019 npj Quantum Mater.4 2
[19]
Abdel-Hafiez M, Zhang Y Y, Cao Z Y, Duan C G, Karapetrov G, Pudalov V M, Vlasenko V A, Sadakov A V, Knyazev D A, Romanova T A, Chareev D A, Volkova O S, Vasiliev A N, and Chen X J 2015 Phys. Rev. B91 165109
Watson M D, Kim T K, Haghighirad A A, Blake S F, Davies N R, Hoesch M, Wolf T, and Coldea A I 2015 Phys. Rev. B92 121108(R)
[22]
Reiss P, Watson M D, Kim T K, Haghighirad A A, Woodruff D N, Bruma M, Clarke S J, and Coldea A I 2017 Phys. Rev. B96 121103(R)
[23]
Xu H C, Niu X H, Xu D F, Jiang J, Yao Q, Chen Q Y, Song Q, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R, and Feng D L 2016 Phys. Rev. Lett.117 157003
[24]
Tetsuo H, Katsuya I, Yuhki K, Tadashi M, Tatsuya W, Shigeru K, Takasada S, and Yuji M 2018 Sci. Adv.4 eaar6419
[25]
Li C, Wu X, Wang L, Liu D, Cai Y, Wang Y, Gao Q, Song C, Huang J, Dong C, Liu J, Ai P, Luo H, Yin C H, Liu G, Huang Y, Wang Q, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Xu Z, Shi Y, Hu J, Xiang T, Zhao L, and Zhou X J 2020 Phys. Rev. X10 031033
Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, and Zhao J 2016 Nat. Mater.15 159
[28]
Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T, and Coldea A I 2015 Phys. Rev. B91 155106
[29]
Gerber S, Yang S L, Zhu D, Soifer H, Sobota J A, Rebec S, Lee J J, Jia T, Moritz B, Jia C, Gauthier A, Li Y, Leuenberger D, Zhang Y, Chaix L, Li W, Jang H, Lee J S, Yi M, Dakovski G L, Song S, Glownia J M, Nelson S, Kim K W, Chuang Y D, Hussain Z, Moore R G, Devereaux T P, Lee W S, Kirchmann P S, and Shen Z X 2017 Science357 71
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, and Xue Q K 2011 Science332 1410
[32]
Watashige T, Tsutsumi Y, Hanaguri T, Kohsaka Y, Kasahara S, Furusaki A, Sigrist M, Meingast C, Wolf T, Löhneysen H V, Shibauchi T, and Matsuda Y 2015 Phys. Rev. X5 031022
[33]
Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, and Séamus D J C 2017 Science357 75
[34]
Liu D, Li C, Huang J, Lei B, Wang L, Wu X, Shen B, Gao Q, Zhang Y, Liu X, Hu Y, Xu Y, Liang A, Liu J, Ai P, Zhao L, He S, Yu L, Liu G, Mao Y, Dong X, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Shi Y, Hu J, Xiang T, Chen X, Xu Z, Chen C, and Zhou X J 2018 Phys. Rev. X8 031033
Hashimoto T, Ota Y, Yamamoto H Q, Suzuki Y, Shimojima T, Watanabe S, Chen C, Kasahara S, Matsuda Y, Shibauchi T, Okazaki K, and Shin S 2018 Nat. Commun.9 282
Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, and Chen X H 2020 Phys. Rev. Lett.125 097003
[39]
Miao H, Brito W H, Yin Z P, Zhong R D, Gu G D, Johnson P D, Dean M P M, Choi S, Kotliar G, Ku W, Wang X C, Jin C Q, Wu S F, Qian T, and Ding H 2018 Phys. Rev. B98 020502(R)
[40]
Kreisel A, Andersen B M, Sprau P O, Kostin A, Davis J C S, and Hirschfeld P J 2017 Phys. Rev. B95 174504
Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, and Zhao J 2016 Nat. Commun.7 12182